Geometrically and Topologically Unstructured Polygons for Dynamic Cohesive Fracture
Daniel W. Spring, Sofie E. Leon and Glaucio H. Paulino
University of Illinois at Urbana-Champaign

Motivation
Brittle and quasi-brittle fracture problems appear across a wide range of fields, and cover a variety of applications

Research Objectives
- Develop a computational framework that reduces the mesh induced bias which has historically been present in dynamic cohesive fracture simulations
- Employ polygonal finite elements, taking advantage of their adaptive features and ability to easily discretize any arbitrary problem domain
- Develop a series of topological operators, particularly adaptive refinement and adaptive element splitting, to make on-the-fly modifications to the mesh

Polygonal Bulk Elements
Polygonal finite elements provide an isotropic discretization of any arbitrary domain

Cohesive Elements for Fracture
The inelastic zone in front of the crack tip is described by a cohesive traction-separation relation

Adaptive Refinement
Every crack tip is tracked and a region around each is refined with quadrilateral elements

Adaptive Element Splitting
Cracks are allowed to split elements to help alleviate mesh induced restrictions.

Experimental Validation
Experimental result with crack initiation angle of ~16°

Conclusions and Extensions
- Geometrically unstructured polygonal elements result in an isotropic discretization of the problem domain, but provide few paths for cracks to propagate along.
- By applying adaptive topological operators, such as, adaptive refinement and adaptive element splitting, the mesh induced bias can be alleviated.
- These techniques allow us to capture experimentally observed fracture patterns.
- A potential extension of this work, could be in the study of hierarchical materials. For example, at small scales, the polygonal elements could represent grains in metals and alloys while the adaptive refinement and splitting could be used to represent either intergranular or intragranular fracture.

References

Acknowledgements
Daniel W. Spring, Sofie E. Leon, and Glaucio H. Paulino gratefully acknowledge the support of the Natural Sciences and Engineering Research Council of Canada, the US National Science Foundation (NSF) Graduate Research Fellowship, and the Donald B. and Elizabeth M. Willett endowment at the University of Illinois at Urbana-Champaign, respectively.