On Optimization of Shape and Topology
Cameron Talischi, Glaucio H. Paulino
Department of Civil and Environmental Engineering
University of Illinois at Urbana-Champaign
Averaging Methods for Multiscale Phenomena Workshop, CMU

Introduction:

- The goal of optimal shape design is to find the most efficient shape of a physical system.
- The response is captured by the solution \(u_\omega \) to a boundary value problem that in turn depends on the given shape \(\omega \)

\[
\inf_{\omega \in \Omega} J(\omega, u_\omega) \quad \text{where} \quad B(u_\omega, v; \omega) = \ell(v), \quad \forall v \in V
\]

\[
\begin{align*}
B(u, v; \omega) &= \int_\Omega \nabla u : [\chi_\omega C^t + (1 - \chi_\omega) C] : \nabla v \, dx, \\
\ell(v) &= \int_{\Gamma_N} t \cdot v \, ds
\end{align*}
\]

Restriction setting:

- If \(\chi_n, \chi \in L^\infty(\Omega; [0, 1]) \) such that \(\chi_n \to \chi \) in \(L^1(\Omega) \), then, up to a subsequence, the associated state solutions also converge, i.e., \(u_{\chi_n} \to u_\chi \) in \(H^1(\Omega; \mathbb{R}^d) \)
- It follows that compactness in \(L^1(\Omega) \) topology is a sufficient condition for existence of solutions.
- A well-known example is the space of shapes with bounded perimeter:

\[
\mathcal{A} = \{ \chi \in BV(\Omega; [0, 1]): \int_\Omega |\nabla \chi| \, dx \leq \mathcal{T} \}
\]

Continuous parametrization:

- \(\mathcal{A} \subseteq L^\infty(\Omega; [0, 1]) \)
- Regularization
- Regularization
- Same solution?
- Depends!
- \(\mathcal{A} \subseteq L^\infty(\Omega; [0, 1]) \)
- (Compact)
- (Compact)

Optimization problem:

- Composite objective: \(\min_{\rho \in \mathcal{A}} F(\rho) := J(\rho) + R(\rho) \)
- Performance functional: \(J(\rho) = \int_{\Gamma_N} t \cdot u_\rho \, ds + \lambda \int_\Omega \rho \, dx \)
- Regularizer: \(R(\rho) = \beta \frac{1}{2} \int_\Omega |\nabla \rho|^2 \, dx = \frac{1}{2} (\rho, R \rho), \quad R = -\beta \Delta \)
- Admissible densities: \(\mathcal{A} = \{ \rho \in H^1(\Omega): 0 \leq \rho \leq 1 \} \)
- State equation: \(\int_\Omega \nabla u_\rho : C_p : \nabla v \, dx = \int_{\Gamma_N} t \cdot v \, ds, \quad \forall v \in V \)

Forward-backward splitting algorithm:

- We consider an optimization algorithm of the form:

\[
\rho_{n+1} = \arg\min_{\rho \in \mathcal{A}} \frac{1}{2\tau_n} \| \rho - [\rho_n - \tau_n J'(\rho_n)] \|^2 + R(\rho)
\]

The intuition is that the next iterate \(\rho_{n+1} \) is close to the gradient descent update on \(J \), i.e., \(\rho_{n+1} - \tau_n J'(\rho_n) \), while minimizing the regularizer \(R(\rho) \)
- Given constants \(\tau_0 > 0 \) and \(0 < \sigma < 1 \), the step size parameter is set to be

\[
\tau_n = \sigma^k \tau_0
\]

where \(k_n \) is the smallest non-negative integer such that \(\tau_n \) satisfies

\[
F(\rho_n) - F(\rho_{n+1}) \geq \frac{1}{2\tau_n} \| \rho_n - \rho_{n+1} \|^2
\]

Improving convergence:

- We consider the following generalization:

\[
\rho_{n+1} = \arg\min_{\rho \in \mathcal{A}} J(\rho_n) + J'(\rho_n) \rho + \frac{1}{2\tau_n} \rho^2 \equiv \rho - \tau_n H_n(\rho - \rho_n) + R(\rho)
\]

where \(H_n \) is a bounded linear positive-definite operator.
- The reciprocal approximation of compliance is its Taylor expansion in the intermediate field \(\rho^{-1} \)

\[
J_{rec}(\rho; \rho_n) = J(\rho_n) + J'(\rho_n) \rho - \frac{1}{2} \left(\rho - \rho_n, \frac{2E(\rho_n)}{\rho} (\rho - \rho_n) \right)
\]

where \(E(\rho) \equiv \rho^{-1}[\nabla u_\rho : (C^t - C) : \nabla u_\rho] \) is the gradient of compliance.
- We embed the same type of approximation into our quadratic model by setting

\[
H_n = J_{rec}(\rho; \rho_n) = \frac{2E(\rho_n)}{\rho} I
\]

Performance of the algorithm:

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>(H_n)</th>
<th>(\tau_0)</th>
<th># iter.</th>
<th># BT</th>
<th>(F)</th>
<th>OC</th>
</tr>
</thead>
<tbody>
<tr>
<td>GP</td>
<td>–</td>
<td>0.25</td>
<td>1000*</td>
<td>0</td>
<td>210.74</td>
<td>1.36e-4</td>
</tr>
<tr>
<td>GP</td>
<td>–</td>
<td>0.5</td>
<td>568</td>
<td>79</td>
<td>210.68</td>
<td>8.94e-5</td>
</tr>
<tr>
<td>FBS</td>
<td>Identity</td>
<td>1</td>
<td>316</td>
<td>1</td>
<td>210.97</td>
<td>9.94e-5</td>
</tr>
<tr>
<td>FBS</td>
<td>Identity</td>
<td>2</td>
<td>215</td>
<td>154</td>
<td>210.91</td>
<td>9.81e-5</td>
</tr>
<tr>
<td>FBS</td>
<td>Reciprocal</td>
<td>1</td>
<td>186</td>
<td>0</td>
<td>211.03</td>
<td>9.36e-5</td>
</tr>
<tr>
<td>FBS</td>
<td>Reciprocal</td>
<td>2</td>
<td>91</td>
<td>39</td>
<td>211.00</td>
<td>9.75e-5</td>
</tr>
<tr>
<td>TM-FBS</td>
<td>Identity</td>
<td>1</td>
<td>330</td>
<td>0</td>
<td>210.95</td>
<td>9.97e-5</td>
</tr>
<tr>
<td>TM-FBS</td>
<td>Identity</td>
<td>2</td>
<td>151</td>
<td>78</td>
<td>210.94</td>
<td>5.90e-5</td>
</tr>
<tr>
<td>TM-FBS</td>
<td>Reciprocal</td>
<td>1</td>
<td>179</td>
<td>0</td>
<td>211.03</td>
<td>9.45e-5</td>
</tr>
<tr>
<td>TM-FBS</td>
<td>Reciprocal</td>
<td>2</td>
<td>85</td>
<td>34</td>
<td>211.00</td>
<td>8.07e-5</td>
</tr>
<tr>
<td>MMA</td>
<td>–</td>
<td>–</td>
<td>1000*</td>
<td>–</td>
<td>213.39</td>
<td>1.91e-4</td>
</tr>
</tbody>
</table>