Adaptive Dynamic Fracture using Nonlinear Cohesive Zone Modeling

Sofie E. Leon¹, Kyoungsoo Park¹, Rodrigo Espinha², Waldemar Celes², Glauicio H. Paulino¹

¹Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, U.S.A.
²Computer Science Department, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil

Research Objectives

- Develop an integrated, multiscale computational framework for dynamic fracture, microbranching, and fragmentation
- Employ the potential-based constitutive model for mixed-mode cohesive zone modeling
- Develop systematic adaptive mesh refinement and coarsening (AMR+C) schemes for dynamic cohesive fracture simulation in two and three dimensions
- Employ adaptive topological operators such as nodal perturbation, edge-swap, edge-split and vertex removal

Adaptive Topological Operators

- Nodal Perturbation
- Edge Split (Refinement)
- Edge Swap
- Vertex Removal (Coarsening)

PPR: Potential-Based Cohesive Model

\[\psi = \min(\phi, \phi_0) + \left[\Gamma_\alpha \left(1 - \frac{\Delta \phi}{\phi_0} \right)^{\alpha} + \Delta \phi - \phi_0 \right] + \left[\Gamma_\beta \left(1 - \frac{|\Delta \phi|}{\phi_0} \right)^{\beta} + \Delta \phi - \phi_0 \right] \]

\[T_\alpha(\Delta \phi, \Delta \phi_0) = -\frac{\beta}{\phi_0} \left(1 - \frac{|\Delta \phi|}{\phi_0} \right)^{\beta} - \frac{|\Delta \phi_0|}{\phi_0} \left(1 - \frac{|\Delta \phi_0|}{\phi_0} \right)^{\beta} \]

Fracture parameters
- Fracture Energy: \(\phi, \phi_0 \)
- Cohesive Strength: \(\sigma_x, \sigma_t \)
- Shape Parameters: \(\alpha, \beta \)

Softening region

\[T_\alpha(\Delta \phi, \Delta \phi_0) = -\frac{\beta}{\phi_0} \left(1 - \frac{|\Delta \phi|}{\phi_0} \right)^{\beta} - \frac{|\Delta \phi_0|}{\phi_0} \left(1 - \frac{|\Delta \phi_0|}{\phi_0} \right)^{\beta} \]

Constitutive relationship

- Fracture parameters: \(\phi = 100 \text{N/m}, \phi_0 = 200 \text{N/m} \)
- Shape parameters: \(\alpha = 5, \beta = 1.3 \)
- Cohesive strength: \(\sigma_x = 40 \text{MPa}, \sigma_t = 30 \text{MPa} \)

Cohesive elements randomly inserted at 20% of the facets

Time to insert cohesive elements scales linearly with mesh size

Conclusions and Extensions

- The potential-based constitutive model with adaptive operators (nodal perturbation, edge-swap, edge-split, and vertex-removal) leads to an effective and efficient computational framework to simulate physical phenomena associated with fracture.
- The topological data structure and adaptive topological operators support the extension of this work to three dimensions.

Acknowledgements

- National Science Foundation (NSF) Graduate Research Fellowship and travel award to the Summer School on Fracture awarded to Sofie Leon

References