The meshless hypersingular boundary node method for three-dimensional potential theory and linear elasticity problems

Mandar K. Chatia,1, Subrata Mukherjeea,*, Glaucio H. Paulinob

aDepartment of Theoretical and Applied Mechanics, Kimball Hall, Cornell University, Ithaca, NY 14853-1503, USA
bDepartment of Civil and Environmental Engineering, University of Illinois, Newmark Laboratory, 205 N. Mathews Avenue, Urbana, IL 61801, USA

Received 23 August 2000; accepted 25 January 2001

Abstract

The Boundary Node Method (BNM) represents a coupling between Boundary Integral Equations (BIEs) and Moving Least Squares (MLS) approximants. The main idea here is to retain the dimensionality advantage of the former and the meshless attribute of the latter. The result is a ‘meshfree’ method that decouples the mesh and the interpolation procedures. The BNM has been applied to solve 2-D and 3-D problems in potential theory and linear elasticity. The Hypersingular Boundary Element Method (HBEM) has diverse important applications in areas such as fracture mechanics, wave scattering, error analysis and adaptivity, and to obtain a symmetric Galerkin boundary element formulation. The present work presents a coupling of Hypersingular Boundary Integral Equations (HBIEs) with MLS approximants, to produce a new meshfree method — the Hypersingular Boundary Node Method (HBNM). Numerical results from this new method, for selected 3-D problems in potential theory and in linear elasticity, are presented and discussed in this paper. © 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Boundary element method; Boundary node method; Hypersingular integrals; Potential theory; Linear elasticity

1. Introduction

Conventional computational engines such as the Finite Difference Method (FDM), Finite Element Method (FEM), and the Boundary Element Method (BEM) require meshing of either the domain (FEM and FDM) or the surface (BEM) of a solid body. Although significant progress has been made in 3-D meshing algorithms (see Mackerle [1]), the task of meshing a 3-D object with complicated geometry can be arduous, time consuming, computationally cumbersome and expensive. Such shortcomings are greatly amplified when one considers problems with changing geometry such as crack propagation, finite deformation, and phase change or shape optimization. The main difficulty in these problems is the task of re-meshing a 3-D object many times during a solution process.

1.1. Meshfree methods

In recent years, novel computational algorithms have been proposed that circumvent some of the problems associated with 3-D meshing. These methods have been collectively referred to as ‘meshfree’ or ‘meshless’ methods. Nayroles et al. [2] proposed a method called the Diffuse Element Method (DEM). The main idea of their work is to replace the usual FEM interpolation by a ‘diffuse approximation’. Their strategy consists of using a moving least-squares approximation scheme to interpolate the field variables — these are called MLS interpolants in Ref. 2 (called MLS approximants in this work). Nayroles et al. [2] have applied the DEM to 2-D problems in potential theory and linear elasticity.

Meshfree methods proposed to date include the Element-Free Galerkin (EFG) method (Belytschko et al. [3]), the Reproducing Kernel Particle Method (RKPM) [4], \(h-p \) clouds [5–7], the Meshless Local Petrov-Galerkin (MLPG) approach [8,9], the Local Boundary Integral Equation (LBIE) method [10], the Natural Element Method (NEM) [11], the Generalized Finite Element Method (GFEM) [12] — see Moës et al. [13] for related work and the Boundary Node Method (BNM). The main idea in the EFG method is to use Moving Least Squares (MLS) approximants to construct the trial functions used in the Galerkin weak form. A wide variety of problems have been solved using the EFG method. In the introductory paper by Belytschko et al. [3], the EFG method was applied.
to 2-D problems in linear elasticity and heat conduction. Since then, the method has been applied, for example, to solve problems in elasto-plasticity [14], fracture mechanics [15], crack growth [16,17], dynamic fracture [18,19,20], elasto-plastic fracture mechanics [21,22], plate bending [23], thin shells [24], and sensitivity analysis and shape optimization [25]. A special issue of the journal Computer Methods in Applied Mechanics and Engineering contains review articles by Belytschko et al. [26] and Liu et al. [27], in addition to various other research papers on meshless methods. Another source of information on the RKPM is an overview article by Liu et al. [28].

1.2. Hypersingular Boundary Element Method (HBEM)

Hypersingular Boundary Integral Equations (HBIEs) are derived from a differentiated version of the usual boundary integral equations (BIEs). HBIEs have diverse important applications and are the subject of considerable current research (see, for example, [29–32] for recent surveys of the field). HBIEs, for example, have been employed for the evaluation of boundary stresses (e.g. [33–36]), in wave scattering (e.g. [37]), in fracture mechanics (e.g. [31,38–41]), to obtain symmetric Galerkin boundary element formulations (e.g. [42–45]), to obtain the hypersingular boundary contour method [46,47], and for error analysis [48–52] and adaptivity ([51,52]). A lively debate (e.g. [53,54]), on smoothness requirements on boundary variables for collocating an HBIE on the boundary of a body, has apparently been concluded recently [55], see also Ref. [52]).

1.3. BNM

Mukherjee and Mukherjee [56] have recently proposed a meshfree method called the BNM. The BNM has been used for 2-D problems in potential theory [56] and linear elasticity [57], for 3-D problems in potential theory [58] and linear elasticity [59], and for error analysis and adaptivity [51]. This method is a combination of the MLS approximation scheme and the standard BIE method. The method divorces the traditional coupling between spatial discretization (meshing) and interpolation as commonly practiced in the FEM or in the BEM. Instead, a ‘diffuse’ approximation, based on MLS approximants, is used to represent the unknown functions; and surface cells, with a very flexible structure (e.g. any cell can be arbitrarily subdivided without affecting its neighbors), are used for integration (Fig. 1). Thus, the BNM retains the meshless attribute of the EFG method and the dimensionality advantage of the BEM. As a consequence, the BNM only requires the specification of points on the 2-D bounding surface of a 3-D body (including crack faces in mechanics problems), together with unstructured surface cells, thereby practically eliminating the meshing problem that has been referred to previously. In contrast, the FEM needs volume meshing, the BEM needs surface meshing, and the EFG needs points throughout the domain of a body.

1.4. Outline of this paper

The HBNM is obtained by combining the HBIE for a given boundary value problem with MLS approximants. The HBNM is derived from the appropriate HBIE, for potential theory and for linear elasticity, and is then numerically implemented in the present paper.

This paper is organized as follows. A brief literature review is provided in this Section. Next, Section 2 presents MLS approximants, including a technique for evaluation of tangential derivatives on the boundary. Section 3 reviews the standard BIE employed in the traditional collocation-based BEM, and Section 4 its corresponding meshless version called the BNM. Section 5 presents the HBIE and Section 6 the HBNM, which is obtained from the corresponding HBIE. Numerical results from the HBNM, for problems in potential theory and in linear elasticity, are presented in Section 7. Several aspects of the HBNM, such as position of collocation nodes, determination of geodesics, range of influence of nodes, solution at internal points, accuracy and convergence properties, are investigated in Section 7. Finally, some concluding remarks are presented in Section 8. Appendix A completes the paper.

2. Surface approximants

A moving least-squares (MLS) approximation scheme, using curvilinear coordinates on the surface of a 3-D solid body, is suitable for the BNM. Such a scheme for problems in potential theory [58] and for linear elasticity [59] is briefly described here and employed in the theoretical and numerical schemes that follow.

2.1. MLS approximants

It is assumed that, for 3-D problems, the bounding surface \(\partial B \) of a solid body is the union of piecewise smooth segments called panels. On each panel, one defines surface curvilinear coordinates \((s_1, s_2)\). For 3-D problems in potential theory, let \(u \) be the potential function and \(\tau = \partial u / \partial n \) the flux. (Here \(n \) is an unit outward normal to \(\partial B \) at a point on it). For
3-D linear elasticity, let \(u \) denote a component of the displacement vector \(\mathbf{u} \) and \(\tau \) be a component of the traction vector \(\mathbf{\tau} \) on \(\partial B \). One defines:

\[
 u(s) = \sum_{i=1}^{m} p_i(s - s_i^{E})a_i = \mathbf{p}^T(s - s_i^{E})a,
\]

\[
 \tau(s) = \sum_{i=1}^{m} p_i(s - s_i^{E})b_i = \mathbf{p}^T(s - s_i^{E})b.
\]

The monomials \(p_i \) (see below) are evaluated in local coordinates \((s_1 - s_1^{F}, s_2 - s_2^{F}) \), where \((s_1^{E}, s_2^{E})\) are the global coordinates of an evaluation point \(E \). It is important to state here that \(a_i \) and \(b_i \) are not constants. Their functional dependencies are determined later. The name \textquoteleft MLS\textquoteright arises from the fact that the quantities \(a_i \) and \(b_i \) are not constants. The integer \(m \) is the number of monomials in the basis used for \(u \) and \(\tau \). Quadratic approximants, for example, are of the form:

\[
 \mathbf{p}^T(\tilde{s}_1, \tilde{s}_2) = [1, \tilde{s}_1, \tilde{s}_2, \tilde{s}_1^2, \tilde{s}_2^2, \tilde{s}_1 \tilde{s}_2],
\]

\[
m = 6, \quad \tilde{s}_i = s_i - s_i^{E}; \quad i = 1, 2.
\]

The coefficients \(a_i \) and \(b_i \) are obtained by minimizing the weighted discrete \(L_2 \) norms:

\[
 R_u = \sum_{i=1}^{n} w_i(d) |(\mathbf{p}^T(s^i - s_i^{E})a - \hat{u}_i)^2,
\]

\[
 R_{\tau} = \sum_{i=1}^{n} w_i(d) |(\mathbf{p}^T(s^i - s_i^{E})b - \hat{\tau}_i)^2,
\]

where the summation is carried out over the \(n \) boundary nodes for which the weight function satisfies the inequality \(w_i(d) \neq 0 \). (Weight functions are defined in Section 2.3). The quantity \(d = g(s, s_i) \) is the length of the geodesic on \(\partial B \) between \(s \) and \(s_i \). These \(n \) nodes are said to be within the domain of dependence of a point \(s \) (evaluation point \(E \) in Fig. 2(a)). Also, \((s_1^{E} - s_1^{F}, s_2^{E} - s_2^{F})\) are the local surface coordinates of the boundary nodes with respect to the evaluation points \(s_i^{E} = (s_1^{E}, s_2^{E}) \) and \(\hat{u}_i \) and \(\hat{\tau}_i \) are the approximations to the nodal values \(u_i \) and \(\tau_i \). These equations above can be rewritten in compact form as:

\[
 R_u = (\mathbf{P}(s^i - s_i^{E})a - \hat{u})^T\mathbf{W}(s, s_i')\mathbf{P}(s^i - s_i^{E})a - \hat{u},
\]

\[
 R_{\tau} = (\mathbf{P}(s^i - s_i^{E})b - \hat{\tau})^T\mathbf{W}(s, s_i')\mathbf{P}(s^i - s_i^{E})b - \hat{\tau},
\]

where \(\hat{u}^T = (\hat{u}_1, \hat{u}_2, \ldots, \hat{u}_n) \), \(\hat{\tau}^T = (\hat{\tau}_1, \hat{\tau}_2, \ldots, \hat{\tau}_n) \). \(\mathbf{P}(s^i) \) is an \(n \times m \) matrix whose \(k \)th row is:

\[
 [1, p_2(s^i_1, s^i_2), \ldots, p_m(s^i_1, s^i_2)]
\]

and \(\mathbf{W}(s, s_i') \) is an \(n \times n \) diagonal matrix with \(w_{kk} = w_k(d) \) (no sum over \(k \)). A typical weight function \(w_k(d) \) is shown in Fig. 2(b) and is discussed in Section 2.3.

The stationarity of \(R_u \) and \(R_{\tau} \), with respect to \(\mathbf{a} \) and \(\mathbf{b} \), respectively, leads to the equations:

\[
 \mathbf{a}(s) = \mathbf{A}^{-1}(s)\mathbf{B}(s)\hat{u}, \quad \mathbf{b}(s) = \mathbf{A}^{-1}(s)\mathbf{B}(s)\hat{\tau},
\]

where

\[
 \mathbf{A}(s) = \mathbf{P}^T(s^i - s_i^{E})\mathbf{W}(s, s_i')\mathbf{P}(s^i - s_i^{E}),
\]

\[
 \mathbf{B}(s) = \mathbf{P}^T(s^i - s_i^{E})\mathbf{W}(s, s_i').
\]

It is noted from above that the coefficients \(a_i \) and \(b_i \) turn out to be functions of \(s \).
Substitution of Eq. (6) into Eq. (1) leads to:
\[u(s) = \sum_{l=1}^{n} \Phi_l(s)\hat{u}_l, \quad \tau(s) = \sum_{l=1}^{n} \Phi_l(s)\hat{\tau}_l, \]
where the approximating functions are \(\Phi_l \) are:
\[\Phi_l(s) = \sum_{j=1}^{m} p_j(s - s^F)A^{-1}Bj(s). \]
As mentioned previously, \(\hat{u} \) and \(\hat{\tau} \) are approximations to the actual nodal values \(u \) and \(\tau \). The two sets of values are related by Eq. (8). Discretized versions of Eq. (8) can be written as:
\[[H]\{\hat{u}_k\} = \{u_k\}, \quad [H]\{\hat{\tau}_k\} = \{\tau_k\}, \quad k = 1, 2, 3. \]
Eq. (10) relate the nodal approximations of \(u \) and \(\tau \) to their nodal values.

2.2. Surface derivatives

Surface derivatives of the potential (or displacement) field \(u \) are required for the HBIE. These are computed as follows. With \(C = A^{-1}B \)

Eqs. (8) and (9) give:
\[u(s) = \sum_{l=1}^{n} \sum_{j=1}^{m} p_j(s - s^F)Cj(s)\hat{u}_l \]
and the tangential derivatives of \(u \) can be written as:
\[\frac{\partial u(s)}{\partial s_k} = \sum_{l=1}^{n} \sum_{j=1}^{m} \left[\frac{\partial p_j}{\partial s_k}(s - s^F)Cj(s) + p_j(s - s^F) \frac{\partial Cj(s)}{\partial s_k} \right]\hat{u}_l, \quad k = 1, 2. \]
The derivatives of the monomials \(p_j \) can be promptly computed. These are:
\[\frac{\partial p_j^F}{\partial s_1}(s_1 - s_1^F, s_2 - s_2^F) = [0, 1, 0, 2(s_1 - s_1^F), 0, (s_2 - s_2^F)], \]
\[\frac{\partial p_j^F}{\partial s_2}(s_1 - s_1^F, s_2 - s_2^F) = [0, 0, 1, 0, 2(s_2 - s_2^F), (s_1 - s_1^F)]. \]
After some simple algebra (Chati [60]), the derivatives of the matrix \(C \) with respect to \(s_k \) take the form:
\[\frac{\partial C(s)}{\partial s_k} = -A^{-1}(s) \frac{\partial B(s)}{\partial s_k} P(s' - s^F)A^{-1}(s)B(s) \]
\[+ A^{-1}(s) \frac{\partial B(s)}{\partial s_k}, \quad k = 1, 2, \]
with
\[\frac{\partial B(s)}{\partial s_k} = P'(s' - s^F) \frac{\partial W(s,s')}{\partial s_k}. \]

In deriving Eq. (15), the following identity has been used:
\[\frac{\partial A^{-1}(s)}{\partial s_k} = -A^{-1}(s) \frac{\partial A(s)}{\partial s_k} A^{-1}(s), \quad k = 1, 2. \]
Tangential derivatives of the weight functions (described in Section 2.3) are easily computed (Chati [60]). The final form of the tangential derivatives of the potential (or displacement) \(u \), at an evaluation point \(E \), takes the form:
\[\frac{\partial u}{\partial s_k}(s^E) = \sum_{l=1}^{n} \sum_{j=1}^{m} \left[\frac{\partial p_j}{\partial s_k}(0,0)Cj(s^E) \right]\hat{u}_l + \sum_{l=1}^{n} \sum_{j=1}^{m} \left[p_j(0,0) \left\{ A^{-1}(s^E) \frac{\partial B}{\partial s_k}(s^E)(I - P(s' - s^E) \right\} \hat{u}_l \right. \]
\[\times \left. A^{-1}(s^E)B(s^E) \right\} \right] \]
with \(k = 1, 2 \). In the above equation, \(I \) is the identity matrix.

One also needs the spatial gradient of the function \(u \) in order to solve the HBIE (see Sections 5 and 6). For problems in potential theory, this is easily obtained from its tangential and normal derivatives \(\partial u/\partial s_k \) and \(\partial u/\partial n \), respectively. For elasticity problems, however, one must also use Hooke’s law at a point on the surface \(\partial B \). Details of this procedure are given in Appendix A.

Eq. (18) can be rewritten in compact form as:
\[\frac{\partial u}{\partial s_k}(s^E) = \sum_{l=1}^{n} \Psi_l^k(s^E)\hat{u}_l; \quad k = 1, 2, \]
where the approximating functions \(\Psi_l^k \) are:
\[\Psi_l^k(s^E) = \sum_{j=1}^{m} \left[\frac{\partial p_j}{\partial s_k}(0,0)Cj(s^E) \right] \]
\[+ \sum_{j=1}^{m} \left[p_j(0,0) \left\{ A^{-1}(s^E) \frac{\partial B}{\partial s_k}(s^E) \right\} \hat{u}_l \right. \]
\[\times \left. A^{-1}(s^E)B(s^E) \right\} \[
\]
2.3. Weight functions

The basic idea behind the choice of a weight function is that its value should decrease with distance from a node and that it should have compact support so that the region of influence of a node is of finite extent (Fig. 2(b)). A possible choice is the Gaussian weight function:
\[w_l(d) = \begin{cases}
 e^{-((d/d_l)^2)} & \text{for } d \leq d_l, \\
 0 & \text{for } d > d_l.
\end{cases} \]
Here \(d = g(s, s') \) is the minimum distance, measured on
the surface \(\partial B \), (i.e. the geodesic) between a point \(s \) and
the collocation node \(I \). In the research performed to date, the
region of influence of a node has been truncated at the edge of
a panel (Fig. 2(a)) so that geodesics, and their derivatives
(for use in Eq. (21)), need only be computed on piecewise
smooth surfaces. Finally, the quantities \(d_i \) determine the
extent of the region of influence (the compact support) of
node \(I \). They can be made globally uniform, or can be
adjusted such that approximately the same number of
nodes get included in the region of influence of any given
node \(I \) or in the domain of dependence of a given evaluation
point \(E \). Such ideas have been successfully implemented in
Refs. [58,59].

3. BIEs

The standard (singular) BIEs for potential theory and
linear elasticity are given below. It is hoped that the
sequence of presentations below will help towards a clear
understanding of boundary-based meshless methods.

3.1. Potential theory

The well known regularized BIE for 3-D problems in
potential theory is (see, for example, Banerjee [61]):

\[
0 = \int_{\partial B} [G(P, Q)\tau(Q) - F(P, Q)(u(Q) - u(P))] \, dS_Q, \quad (22)
\]

where, as mentioned before, \(u \) is the potential, \(\tau = \partial u / \partial n \) is
the flux, and the kernels for 3-D problems are:

\[
G(P, Q) = \frac{1}{4\pi r(P, Q)} , \quad F(P, Q) = \frac{\partial G(P, Q)}{\partial n_Q}. \quad (23)
\]

Here, \(r \) is the Euclidean distance between the source point
\(P \) and field point \(Q \), and \(n_Q \) is the unit normal to \(\partial B \) at a
(regular) field point \(Q \).

3.2. Linear elasticity

For 3-D linear elasticity, the standard BIE, in regu-
larized form, and in the absence of body forces, can be
written as ((62))

\[
0 = \int_{\partial B} [U_{ik}(P, Q)\tau_k(Q) - T_{ik}(P, Q)(u_k(Q) - u_k(P))] \, dS_Q , \quad (24)
\]

where \(u_k \) and \(\tau_k \) are the components of the displacement
and traction respectively, and the Kelvin kernels are:

\[
U_{ik} = \frac{1}{16\pi(1 - \nu)Gr} [(3 - 4\nu)\delta_{ik} + r_jr_k], \quad (25)
\]

\[
T_{ik} = \frac{-1}{8\pi(1 - \nu)r^2} \left\{ (1 - 2\nu)\delta_{ik} + 3r_jr_k \right\} \frac{\partial r}{\partial n} - (1 - 2\nu)(r_jn_k - r_kn_j). \quad (26)
\]

In the above, \(n_i \) are the components of the unit normal at
the field point \(Q \). \(G \) is the shear modulus, \(\nu \) is the Poisson
ratio and \(\delta_{ij} \) denotes the Kronecker delta. A comma denotes
a derivative with respect to a field point, i.e.

\[
r_j = \frac{\partial r}{\partial x_i(Q)} = \frac{x_j(Q) - x_j(P)}{r}. \quad (27)
\]

4. BNM

The MLS approximates derived in Section 2 are used to
approximate \(u \) and \(\tau \) on the boundary \(\partial B \). In order to carry
out the integrations, the bounding surface is discretized into
cells. A variety of shape functions have been used in order to
interpolate the geometry. In particular, the bilinear (Q4) and
quadratic (T6) triangle cells have been employed. These
\'geometric\' shape functions can be found in any standard
text on the FEM (see [63,64]).

4.1. Potential theory

Substituting the expressions for \(u \) and \(\tau \) from Eq. (8) into
Eq. (22), and dividing \(\partial B \) into \(N_c \) cells, one gets the dis-
cretized form of the BIE for potential problems as follows:

\[
0 = \sum_{k=1}^{N_c} \int_{\partial B_k} \left\{ \frac{\partial}{\partial n} \left[\sum_{l=1}^{N_p} \Phi_{i}(Q)\hat{r}_l - F(P, Q) \right] \right\} \, dS_Q.
\]

(28)

where \(\Phi_{i}(P) \) and \(\Phi_{i}(Q) \) are the contributions from the \(i \)th
node to the collocation point \(P \) and field point \(Q \),
respectively. Also, \(N_0 \) nodes are situated in the domain
of dependence of the field point \(Q \) and \(N_p \) nodes are situated
in the domain of dependence of the source point \(P \).

4.2. Linear elasticity

The BNM equation for elasticity is obtained by substituting
the expressions for \(u_k \) and \(\tau_k \) (Eq. (8) into Eq. (24), leading
to:

\[0 = \sum_{m=1}^{N_{b}} \sum_{l=1}^{N_{b}} \left[\Phi_{l}(Q) \tilde{t}_{\ell} - T_{\ell k}(P, Q) \right] \\
\times \left\{ \sum_{l=1}^{N_{b}} \Phi_{l}(Q) \tilde{t}_{\ell} - \sum_{l=1}^{N_{b}} \Phi_{l}(P) \tilde{t}_{\ell} \right\}] \right\} dS_{Q}. \]

(29)

4.3. Discretization

In order to evaluate the non-singular integrals in Eqs. (28) and (29) over (possibly curved) triangular or rectangular surface elements, 7 point and 3 x 3 Gauss quadrature are used, respectively. However, as \(Q \to P \) the kernels \(G \) and \(U_{\ell k} \) become weakly singular and the kernels \(F \) and \(T_{\ell k} \) become strongly singular. As shown in Eqs. (28) and (29), the strongly singular integrands are regularized by using rigid body modes and the regularized versions are weakly singular. Finally, special integration techniques are used to evaluate the resulting weakly singular integrals in Eqs. (28) and (29) \((58,65)\).

The final discretized version of either Eq. (28) or Eq. (29) has the form:

\[[\textbf{A}_{(\theta)}] \{ \tilde{\textbf{u}} \} + [\textbf{A}_{(\tau)}] \{ \tilde{\tau} \} = \{ 0 \}. \]

(30)

With respect to elasticity theory, the count for the number of equations and unknowns follows. For \(N_{b} \) nodes on the bounding surface, there are \(12N_{b} \) quantities on the boundary, i.e. \(3N_{b} \) values for each of \(u_{i} \) and its nodal approximation \(\tilde{u}_{i} \) and similarly for \(\tau_{i} \). For a well posed problem, values of either \(u_{i} \) or \(\tau_{i} \) are known at each node on the boundary, so \(3N_{b} \) nodal values are given. Therefore, \(9N_{b} \) equations are needed to solve for the \(9N_{b} \) remaining unknowns. Eq. (30) consists of \(3N_{b} \) equations and Eq. (10) consist of \(3N_{b} \) equations each. Thus, a well-posed boundary value problem can be solved using Eq. (30), in combination with Eq. (20). An analogous count of equations and unknowns applies to Eq. (28) for potential theory.

5. HBIEs

Continuing the basic development of Section 3, the HBIEs for potential theory and linear elasticity are presented here.

5.1. Potential theory

The HBIE is obtained upon differentiation of the primary BIE at an internal source point with respect to the coordinates of that source point. Due to differentiation, the kernels in the HBIE become strongly singular and hypersingular, respectively, and appropriate regularization procedures need to be employed in order to use the HBIEs for carrying out meaningful computations. The fully regularized HBIE for the Laplace’s equation, at a regular point on \(\partial B \) (where it is locally smooth) can be written as (see Krishnasamy et al. [29]),

\[0 = \int_{\partial B} \frac{\partial G(P, Q)}{\partial x_{m}(P)} [\tau(Q) - \tau(P)] dS_{Q} \\
- u_{k}(P) \int_{\partial B} \frac{\partial G(P, Q)}{\partial x_{m}(P)} [n_{k}(Q) - n_{k}(P)] dS_{Q} \\
- \int_{\partial B} \frac{\partial F(P, Q)}{\partial x_{m}(P)} [u(Q) - u(P) - u_{k}(P)\chi_{k}(Q)] dS_{Q}. \]

(31)

Carrying out the inner product of Eq. (31) with the source point normal \(\textbf{n}(P) \), one obtains:

\[0 = \int_{\partial B} \frac{\partial G(P, Q)}{\partial n(P)} [\tau(Q) - \tau(P)] dS_{Q} \\
- u_{k}(P) \int_{\partial B} \frac{\partial G(P, Q)}{\partial n(P)} [n_{k}(Q) - n_{k}(P)] dS_{Q} \\
- \int_{\partial B} \frac{\partial F(P, Q)}{\partial n(P)} [u(Q) - u(P) - u_{k}(P)\chi_{k}(Q)] dS_{Q}. \]

(32)

The gradient of the potential function is required in the HBIEs Eqs. (31) and (32). For potential problems, the gradient (at a regular boundary point) can be written as,

\[\nabla u = \frac{\partial u}{\partial \xi_{1}} \textbf{t}_{1} + \frac{\partial u}{\partial \xi_{2}} \textbf{t}_{2} + \tau \textbf{n}, \]

(33)

where \(\tau = \partial u/\partial n \) is the flux, \(\textbf{n} \) is the unit normal, \(\textbf{t}_{1}, \textbf{t}_{2} \) are the appropriately chosen unit vectors in two tangential directions on the surface of the body, and \(\partial u/\partial s_{i}, i = 1, 2 \) are the tangential derivatives of \(u \) (along \(\textbf{t}_{1} \) and \(\textbf{t}_{2} \)) on the surface of the body.

5.2. Linear elasticity

Similarly, the fully regularized HBIE for linear elasticity can be written as (see Cruse and Richardson [54]),

\[0 = \int_{\partial B} \frac{D_{jk}(P, Q)}{D_{ik}(P, Q)} (\nabla_{e}(Q) - \nabla_{e}(P)) dS_{Q} \\
- \frac{\partial \sigma_{km}(P)}{\partial x_{m}(P)} \int_{\partial B} \frac{D_{jk}(P, Q)}{D_{ik}(P, Q)} (n_{k}(Q) - n_{k}(P)) dS_{Q} \\
- \int_{\partial B} \frac{\partial S_{jk}(P, Q)}{\partial x_{m}(P)} [u_{k}(Q) - u_{k}(P) - u_{k,m}(P)\chi_{k}(Q)] dS_{Q}. \]

(34)

where the (strongly singular) kernel \(D_{jk} \) and (hypersingular)
kernel S_{ijk} are:

$$
D_{ijk} = \frac{1}{8\pi(1-\nu)^r}[(1-2\nu)(\delta_{ij}r_{jk} + \delta_{ik}r_{ij} - \delta_{jk}r_{ij})
+ 3r_{ij}r_{jk}],
$$

$$
S_{ijk} = \frac{G}{4\pi(1-\nu)^r} \left[\frac{3}{\partial n}[(1-2\nu)\delta_{ij}r_{jk} + \nu(\delta_{ik}r_{ij} + \delta_{jk}r_{ij})
- 5r_{ij}r_{jk} \right] + \frac{G}{4\pi(1-\nu)r^3}\left[3\nu(n_{ij}r_{jk} + n_{ij}r_{jk})
+ (1-2\nu)(3n_{ij}r_{jk} + n_{ij}\delta_{ik} + n_{ij}\delta_{jk}) - (1-4\nu)n_{ij}\delta_{ij}].
$$

Again, taking the inner product of Eq. (34) with the source normal, one gets the equation:

$$
0 = \sum_{i=1}^{N}\int_{\partial B} D_{ijk}(P, Q) n_j(P)(\tau_k(Q) - \tau_k(P)) \, dS_Q
- \sigma_{lm}(P) \int_{\partial B} S_{ijk}(P, Q) n_j(P)(n_m(Q) - n_m(P)) \, dS_Q
- \int_{\partial B} S_{ijk}(P, Q) n_j(P)(u_k(Q) - u_k(P)) - u_{k,m}(P)(y_m(Q)
- y_m(P)) \, dS_Q.
$$

The procedure for obtaining the displacement gradients $u_{k,m}$, that are required in Eqs. (34) and (37), is described in Appendix A. The stress components σ_{ij} can be easily obtained from the displacement gradients using Hooke’s law.

6. Hypersingular boundary node method (HBNM)

Analogous to the development of the BNM in Section 4, derivation of the HBNM for potential theory and linear elasticity are presented in this Section. The goal here is to present a comprehensive treatment of the method.

6.1. Potential theory

Using the interpolation functions τ (second part of the Eq. (8)) and for the tangential derivatives of u (Eq. (19)), one can obtain the discretized forms of the potential gradient (see Eq. (33)) and the HBIEs Eqs. (31) and (32) as follows:

$$
\nabla u = \sum_{i=1}^{n} \Psi_i^{(1)} \hat{u}_i \mathbf{t}_1 + \sum_{i=1}^{n} \Psi_i^{(2)} \hat{u}_i \mathbf{t}_2 + \sum_{i=1}^{n} \Phi_i \mathbf{t}_i n
$$

$$
0 = \sum_{i=1}^{N}\int_{\partial B} D_{ijk}(P, Q) \left[\sum_{l=1}^{N_0} \Phi_l(Q) \hat{\tau}_l - \sum_{l=1}^{N_0} \Phi_l(P) \hat{\tau}_l \right]
- u_k(P) \int_{\partial B} S_{ijk}(P, Q) (n_k(Q) - n_k(P)) \, dS_Q
- \int_{\partial B} \left[\frac{\partial G(P, Q)}{\partial x_m(P)} \sum_{l=1}^{N_0} \Phi_l(Q) \hat{u}_l - \sum_{l=1}^{N_0} \Phi_l(P) \hat{u}_l - u_k(P) \right]
\times (x_k(Q) - x_k(P)) \, dS_Q,
$$

respectively, where $\Phi_i(P)$ and $\Phi_i(Q)$ are the contributions from the ith node to the collocation point P and field point Q, respectively, with N_T and N_Q nodes in their respective domains of dependence. Of course, the gradient of u from Eq. (38), in global coordinates, is used in Eqs. (39) and (40).

6.2. Linear elasticity

As mentioned before, the procedure for obtaining $u_{k,m}$ in the elasticity Eqs. (34) and (37), from the tangential derivatives and tractions, is described in Appendix A. Once this is done, discretized versions of Eqs. (34) and (37) are readily obtained as:

$$
0 = \sum_{i=1}^{N}\int_{\partial B} D_{ijk}(P, Q) \left[\sum_{l=1}^{N_0} \Phi_l(Q) \hat{\tau}_kl - \sum_{l=1}^{N_0} \Phi_l(P) \hat{\tau}_kl \right]
\times dS_Q - \sigma_{lm}(P) \int_{\partial B} S_{ijk}(P, Q)(n_m(Q) - n_m(P)) \, dS_Q
- \int_{\partial B} S_{ijk}(P, Q) \left[\sum_{l=1}^{N_0} \Phi_l(Q) \hat{u}_kl - \sum_{l=1}^{N_0} \Phi_l(P) \hat{u}_kl \right]
\times (y_m(Q) - y_m(P)) \, dS_Q
$$

As mentioned before, the procedure for obtaining $u_{k,m}$ in the elasticity Eqs. (34) and (37), from the tangential derivatives and tractions, is described in Appendix A. Once this is done, discretized versions of Eqs. (34) and (37) are readily obtained as:
and

\[0 = \sum_{l=1}^{N_v} \left[\int_{\partial B_l} D_{ijkl}(P,Q)n_j(P) \left(\sum_{l=1}^{N_v} \Phi_i(Q) n_i - \sum_{l=1}^{N_v} \Phi_i(P) n_i \right) \right] \times dS_Q - \sigma_{mn}(P) \int_{\partial B_l} D_{ijkl}(P,Q)n_j(P)(n_m(Q) - n_m(P)) dS_Q \]

- \sum_{l=1}^{N_v} \Phi_i(P) n_i dS_Q - \sum_{l=1}^{N_v} \Phi_i(Q) n_i dS_Q \]

\[\times \left[\sum_{l=1}^{N_v} \Phi_i(Q) \left(\Phi_i(P) u_{kl} - \Phi_i(Q) u_{kl} \right) \right] dS_Q. \]

\[(42) \]

6.3. Discretization

Eqs. (39) and (40) are the HBNM equations for potential theory, and Eqs. (41) and (42) are the HBNM equations for linear elasticity. In this work, Eq. (40) is used to solve boundary value problems (BVPs) in potential theory and Eq. (42) is used to solve BVPs in linear elasticity.

The procedure followed for discretization of Eqs. (40) and (42) is quite analogous to the BNM case described before in Section 4.3. These equations are fully regularized and contain either non-singular or weakly integrands. Non-singular integrals are evaluated using the usual Gauss quadrature over surface cells, while the weakly singular integrals are evaluated using the procedure outlined in Ref. [58,65]. The discretized version of either Eqs. (40) or (42) has the generic form shown in Eq. (30). Numerical results from the BNM, for 3-D potential theory and linear elasticity, are available in Refs. [58,59], respectively, while corresponding numerical results from the HBNM are presented in this paper.

7. Numerical results

The HBNM is used herein to solve BVPs in potential theory (Laplace’s equation) and linear elasticity. The numerical examples presented provide considerable insight into the working of the method and choice of various parameters. Several aspects of the HBNM are investigated such as positioning of collocation nodes, determination of geodesics, range of influence of nodes (d), solution at internal points, accuracy, and convergence properties. Corresponding numerical results from the standard BNM have been given by Chati et al. [59] and Chati and Mukherjee [58]. The numerical results presented for the solution of BVPs using the HBNM not only validate the method itself, but also indicate its advantage for solving other problems for which HBIEs are of special importance (e.g. error analysis and adaptivity — please find a detailed discussion of this issue in Ref. [51]).

7.1. Potential theory — Dirichlet problems on a sphere

The Laplace’s equation in 3-D can be written as:

\[\nabla^2 u = \frac{\partial^2 u}{\partial x_1^2} + \frac{\partial^2 u}{\partial x_2^2} + \frac{\partial^2 u}{\partial x_3^2} = 0. \]

The HBNM is used to solve Dirichlet problems on a sphere. The exact solutions presented below have been used to evaluate the performance of the various parameters of the HBNM. Dirichlet problems are posed with these solutions imposed (in turn) on the surface of a solid sphere, and the normal derivatives of the potential are computed on the sphere surface. Potential gradients at internal points are also computed in some cases. The complete sphere is modeled in all cases.

- Linear solution
 \[u = x_1 + x_2 + x_3. \]

- Quadratic solution
 \[u = x_1x_2 + x_2x_3 + x_3x_1. \]

- Cubic solution
 \[u = x_1^2 + x_2^2 + x_3^2 - 3x_1^2x_2 - 3x_2^2x_3 - 3x_3^2x_1. \]

- Trigonometric solution
 \[u = \frac{2R^2}{R^2 - \cos^2 \phi} - \frac{2R^2}{3R^2} - \frac{1}{3}. \]

where \(R \) is the radius of the sphere, \(\phi \) is the angle measured from the \(x_3 \) axis and \(r^2 = x_1^2 + x_2^2 + x_3^2 \).

Positioning of collocation nodes. The location of the collocation node in each cell is an important ingredient for the successful implementation of the method. Table 1 presents the global \(L_2 \) error in \(\partial u/\partial n \) on the surface of the sphere for the linear, quadratic and cubic solutions (imposed as Dirichlet boundary conditions on the sphere surface) for various positions of the single collocation node in the parent space \((s,t)\). The global \(L_2 \) error in a function is computed according to the equation;

\[e(\phi) = \frac{\int_A \left(\phi^{(\text{exact})} - \phi^{(\text{numerical})} \right)^2 dA}{\int_A (\phi^{(\text{exact})})^2 dA} \times 100\% \]

where \(\phi \) is the variable of interest and \(A \) is either the area of a panel or of the whole surface \(\partial B \).

The mapping of a triangular surface cell to the parent space \((s,t)\) is shown in Fig. 3. The results have been obtained
using a configuration consisting of 72 T6 triangles with one node per cell. It can be clearly seen from Table 1 that, as expected, placement of the collocation node at the centroid of the triangle in the parent space, i.e. \(s = t = 1/3 \), yields excellent results. Overall, placing the single node at the centroid of the triangle/rectangle yields the best numerical results.

Geodesics. In order to construct the interpolating functions using MLS approximants, it is necessary to compute the geodesic on the bounding surface of a body. Computation of geodesics can get quite cumbersome on a general curved surface described by splines. For the sphere, the exact geodesic between two points \(P \) (collocation node) and \(Q \) (field point) is the length of the arc between these points on the great circle containing them. However, a very simple approximation to the geodesic would be to use the ‘Euclidean’ distance between points \(P \) and \(Q \). Table 2 summarizes the procedure for computing the exact and approximate geodesic on a sphere, while Table 3 presents a comparison in the \(L_2 \) errors for linear, quadratic, cubic and trigonometric solutions imposed on the sphere. For this specific example, with idealized geometry and boundary conditions, it can be seen that the errors remain reasonably small even if the approximate geodesic is used to replace the exact one. Thus, it is expected that the computation of geodesics on complicated shapes will not be a hindrance towards using the present methodology.

Range of influence of nodes. Another important feature of the MLS approximants is the range of influence associated with each node. The parameter which controls the so-called ‘compact support’ associated with each node is \(d_i \). In this work the parameter \(d_i \) is chosen to be non-homogeneous in the sense that each evaluation point has an identical number of nodes in its domain of dependence. Now, for a given polynomial basis (e.g. Linear/Quadratic/Cubic), the number of nodes \(n \) in the domain of dependence of each evaluation point becomes the parameter of interest.

The parameters \(d_i \) are chosen as follows. For a given \(n \), let \(S \) be the set of nodes in the domain of dependence of a particular evaluation point \(E \). The values of \(d_i \) for all nodes in \(S \) are set equal to \(d_{\text{max}} \), where \(d_{\text{max}} \) is the distance from \(E \), along the geodesic, of the node in \(S \), which is farthest from \(E \).

Fig. 4(a) and (b) show the effect of varying the number of nodes \(n \) for a linear basis (\(m = 3 \)) and a quadratic basis (\(m = 6 \)), respectively, for the cubic and trigonometric solutions. It is observed that the lowest value of \(L_2 \) errors is obtained for \(n \in (2m,3m) \). This fact has also been observed for the BNM ([58]).

Potential and gradient at internal points. Fig. 5(a) and (b) show variation in the potential and its \(x_1 \) derivative, respectively, for points along the \(x_1 \) axis inside the sphere. The Dirichlet boundary value problem is solved upon imposing the trigonometric solution on a cell configuration consisting of 72 T6 cells with one node per cell and a quadratic basis (\(m = 6 \)). It is seen from these figures that the HBNM solutions match the exact solutions within plotting accuracy for both \(u \) and \(\partial u / \partial x_1 \).

An important point needs to be made here. Some kernels in a BIE or HBIIE become nearly singular when collocated at an internal point that is close to the boundary of a body. This can lead to large errors in a BNM or HBNM numerical solution at such points. This matter has been dealt with by several researchers. The reader is referred to a recent paper by Mukherjee et al. [66] for a detailed discussion of nearly

Table 1

<table>
<thead>
<tr>
<th>(s = t)</th>
<th>Linear(%)</th>
<th>Quadratic(%)</th>
<th>Cubic(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>4.369</td>
<td>8.735</td>
<td>30.264</td>
</tr>
<tr>
<td>0.15</td>
<td>3.692</td>
<td>5.982</td>
<td>23.405</td>
</tr>
<tr>
<td>0.2</td>
<td>0.519</td>
<td>2.404</td>
<td>11.414</td>
</tr>
<tr>
<td>0.25</td>
<td>0.336</td>
<td>1.271</td>
<td>5.628</td>
</tr>
<tr>
<td>0.3</td>
<td>0.185</td>
<td>0.730</td>
<td>3.625</td>
</tr>
<tr>
<td>1/3</td>
<td>0.0717</td>
<td>0.313</td>
<td>1.665</td>
</tr>
<tr>
<td>0.35</td>
<td>0.153</td>
<td>0.593</td>
<td>2.2187</td>
</tr>
<tr>
<td>0.4</td>
<td>0.454</td>
<td>1.111</td>
<td>2.566</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Exact versus approximate geodesics on the surface of a sphere</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collocation point</td>
</tr>
<tr>
<td>(P(x_1, x_2, x_3) = (R, \theta_r, \phi_r))</td>
</tr>
<tr>
<td>Field point</td>
</tr>
<tr>
<td>(Q(x_1, x_2, x_3) = (R, \theta_q, \phi_q))</td>
</tr>
<tr>
<td>(\bar{x}_1 = R(\theta_q - \theta_r); \bar{x}_2 = R(\phi_q - \phi_r))</td>
</tr>
<tr>
<td>Exact geodesic</td>
</tr>
<tr>
<td>Approximate geodesic</td>
</tr>
<tr>
<td>(d = \sqrt{(\bar{x}_1^2 + \bar{x}_2^2)})</td>
</tr>
</tbody>
</table>

Table 3

<table>
<thead>
<tr>
<th>(\partial u / \partial x_1) error in (\partial u / \partial x_1) for Dirichlet problems on a sphere for the exact and approximate computation of geodesics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exact solution</td>
</tr>
<tr>
<td>Linear</td>
</tr>
<tr>
<td>Quadratic</td>
</tr>
<tr>
<td>Cubic</td>
</tr>
<tr>
<td>Trigonometric</td>
</tr>
</tbody>
</table>
Fig. 4. $e(\partial u/\partial n)$: L_2 error in $\partial u/\partial n$ for varying number of points in the domain of dependence of an evaluation point E; (a) linear polynomial basis $(m = 3)$; (b) quadratic polynomial basis $(m = 6)$ (72 T6 cells with one node per cell).

Fig. 5. Variation of (a) potential and (b) $\partial u/\partial x_1$ along the x_1 axis for a sphere with the trigonometric solution.

singular integrals in the context of the BNM and the HBNM. The approach presented in Ref. [66] has been employed in the present paper in order to obtain accurate values of u and $\partial u/\partial x_1$ (at internal points close to the surface of a body) in Fig. 5, as well as for obtaining the elasticity results presented in Section 7.2.

Convergence study. The results obtained by the HBNM have also been compared with those from the conventional BEM for a Dirichlet problem on a sphere with the trigonometric solution (Eq. (47)). Fig. 6 presents a comparison in the L_2 error in $\partial u/\partial n$ for the HBNM and BEM, as functions of the (global) number of nodes. The L_2 error $e(\phi)$ is defined here as:

$$e(\phi) = \log\left(\frac{\|\phi^{(n)} - \phi^{(e)}\|}{\|\phi^{(e)}\|}\right),$$

(49)

where $\|\phi\| = \sum_{i=1}^{N} (\phi_i)^2$. Here, ϕ_i are the nodal values of the function ϕ and the superscripts n and e refer to its numerical and exact values, respectively. Also, as mentioned above, N is the total number of nodes on ∂B.

Fig. 6 shows that the two methods yield comparable results and have similar rates of convergence. The HBNM solution, however, is more accurate than the BEM solution for this example.

7.2. Linear elasticity

Two benchmark elasticity test problems are solved by the HBNM. These examples are the 3-D versions of the Lamé and Kirsch problems.

7.2.1. 3-D Lamé problem

The 3-D Lamé problem consists of a hollow sphere, with inner and outer radius a and b, respectively, under internal
pressure. Fig. 7 shows a schematic of the problem under consideration. The numerical solution for this problem has been obtained using the material parameters $E = 1.0$, $\nu = 0.25$, and geometric parameters $a = 1.0$, $b = 4.0$ with internal pressure $p_i = 1$. The numerical solution has been obtained by prescribing tractions all over the boundary and then modifying the resulting singular matrix using the ideas presented in the paper by Lutz et al. [67] and Chati et al. [59].

The entire surface of the hollow sphere has been modeled here, i.e. symmetry conditions have not been used. The exact solution for the radial displacement, radial and tangential stresses, as functions of the distance r from the center of the sphere, is given as ([68]):

$$u_r = \frac{p_i a^3 r}{E(b^3 - a^3)} \left[(1 - 2\nu) + (1 + \nu) \frac{b^3}{2r^3} \right].$$

The cell/nodal structure used to obtain the numerical results consists of 72 quadratic T6 cells on each surface of the hollow sphere with 1 node per cell.

Fig. 8(a) shows the radial displacement along the x_1-axis compared with the analytical solution. The radial and tangential stresses are compared to the exact solution in Fig. 8(b). It can be clearly seen that the numerical results are in excellent agreement with the analytical solution. The algorithm presented in Mukherjee et al. [66] is crucial for obtaining accurate solutions for the displacement and stresses at internal points close to the boundary. Also, a
Table 4
Convergence study for \(u_x \) the \(L_2 \) error in radial displacement (\(u_x \)), on the inner and outer surfaces of the sphere, for the 3-D Lamé problem

<table>
<thead>
<tr>
<th></th>
<th>144 cells (%)</th>
<th>256 cells (%)</th>
<th>576 cells (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outer surface</td>
<td>0.404</td>
<td>0.241</td>
<td>0.0496</td>
</tr>
<tr>
<td>Inner surface</td>
<td>0.460</td>
<td>0.214</td>
<td>0.0658</td>
</tr>
</tbody>
</table>

7.2.2. 3-D Kirsch problem

The 3-D Kirsch problem consists of examining the stress distribution in the vicinity of a small spherical cavity in a cube subjected to far field uniform tension, as illustrated in Fig. 9. The material parameters are chosen to be: \(E = 1.0 \), \(v = 0.25 \). The geometric parameters are chosen as: \(a = 1.0 \), \(b = 10.0 \). Again, the loading is applied without restraining any rigid body modes and the scheme by Chati et al. [59] is used to obtain meaningful numerical results.

The exact solution for the normal stress (\(\sigma_{33} \)), for points in the plane \(x_3 = 0 \), is given as (Timoshenko and Goodier [68]):

\[
\sigma_{33} = \sigma_0 \left[1 + \frac{4 - 5v}{2(7-5v)} \frac{a^3}{r^3} + \frac{9}{2(7-5v)} \left(\frac{a}{r} \right)^5 \right] \quad (53)
\]

Here \(r \) is the distance of a generic point from the center of the spherical cavity.

8. Concluding remarks

A new meshfree method called the HBNM, that combines HBIEs with MLS approximants, has been presented in this paper. The efficacy of the HBNM is demonstrated by comparing numerical results, for several 3-D numerical examples in potential theory and in linear elasticity, with analytical solutions for these problems. The HBNM, presented here, is expected to be very useful for obtaining meshfree formulations of diverse important problems such as 3-D fracture mechanics, error analysis and adaptivity and Symmetric Galerkin Boundary Element Methods. Work on error analysis and adaptivity is already in progress [51], while work on the other topics, mentioned above, is planned for the near future.

Acknowledgements

The Cornell group (Chati and Mukherjee) acknowledges support by the University Research Programs (URP) grant from Ford Motor Company to Cornell University. Professor Paulino acknowledges support from the National Science Foundation under Grant CMS-9713008. The computing for this research was carried out using the resources of the Cornell Theory Center, which receives funding from Cornell University, New York State, the National Center.
for Research Resources at the National Institutes of Health, the National Science Foundation, the Defense Department Modernization program, the United States Department of Agriculture, and corporate partners. The efforts of Prachi Chati for carefully proof reading the manuscript are acknowledged.

Appendix A. Displacement gradient on the surface

The displacement gradient at a boundary source point P is needed in order to solve a boundary value problem in linear elasticity using the HBNM (see Eqs. (41) and (42)). Lutz et al. [39] have proposed a scheme for doing this, however, details of the procedure have not been provided in Ref. [39]. These details are given below.

The (right-handed) global Cartesian coordinates, as before, are \((x_1, x_2, x_3)\). Consider (right-handed) local Cartesian coordinates \((x'_1, x'_2, x'_3)\) at a regular point \(P\) on \(\partial B\) as shown in Fig. 11. The local coordinate system is oriented such that the \(x'_1\) and \(x'_2\) coordinates lie along the tangential unit vectors \(t_1\) and \(t_2\) while \(x'_3\) is measured along the outward normal unit vector \(n\) to \(\partial B\) as defined in Eq. (33).

Therefore, one has:

\[
x' = Qx,
\]

\[
u' = Qu,
\]

where \(u'_k, k = 1, 2, 3\) are the components of the displacement vector \(u\) in the local coordinate frame, and the orthogonal transformation matrix \(Q\) has the components:

\[
Q = \begin{bmatrix}
t_{11} & t_{12} & t_{13} \\
t_{21} & t_{22} & t_{23} \\
n_1 & n_2 & n_3
\end{bmatrix}
\]

(A3)

with \(t_j\) the \(j\)th component of the \(i\)th tangent vector and \((n_1, n_2, n_3)\) the components of the normal vector.

The tangential derivatives of the displacement, in local coordinates, are \(u'_{i,j'}, i = 1, 2, 3; k = 1, 2\). These quantities are obtained as follows:

\[
u'_{i,j'} = \frac{\partial u'_i}{\partial s_k} = Q_{ij} \frac{\partial u_i}{\partial x'_j} = Q_{ij} \sum_{l=1}^n \Psi_{l》\delta_{jl},
\]

(A4)

where the last equality is obtained from Eq. (19).

The remaining components of \(\nabla u\) in local coordinates are obtained from Hooke’s law (see [39]) as:

\[
\frac{\partial u'_1}{\partial x'_3} = \frac{r'_1}{G} - \frac{\partial u'_3}{\partial x'_1},
\]

\[
\frac{\partial u'_2}{\partial x'_3} = \frac{r'_2}{G} - \frac{\partial u'_3}{\partial x'_2},
\]

\[
\frac{\partial u'_3}{\partial x'_3} = \frac{(1 - 2\nu)r'_3}{2G(1 - \nu)} - \frac{\nu}{1 - \nu} \left(\frac{\partial u'_1}{\partial x'_1} + \frac{\partial u'_2}{\partial x'_2} \right),
\]

(A5)

where \(r'_k, k = 1, 2, 3\), are the components of the traction vector in local coordinates.

The components of the displacement gradient tensor, in the local coordinate system, are now known. They can be written as:

\[
(\nabla u)_{\text{local}} = A' = \begin{bmatrix}
u'_{1,1'} & \nu'_{1,2'} & \nu'_{1,3'} \\
u'_{2,1'} & \nu'_{2,2'} & \nu'_{2,3'} \\
u'_{3,1'} & \nu'_{3,2'} & \nu'_{3,3'}
\end{bmatrix}
\]

(A6)

Finally, the components of \(\nabla u\) in the global coordinate frame are obtained from those in the local coordinate frame by using the tensor transformation rule:

\[
(\nabla u)_{\text{global}} = A = Q^T A' Q = \begin{bmatrix}
u_{1,1} & \nu_{1,2} & \nu_{1,3} \\
u_{2,1} & \nu_{2,2} & \nu_{2,3} \\
u_{3,1} & \nu_{3,2} & \nu_{3,3}
\end{bmatrix}
\]

(A7)

The gradient of the displacement field in global coordinates is now ready for use in Eq. (42).

References

[57] Kothuri VS, Mukherjee S, Mukherjee YX. Two dimensional linear