Pattern Gradation and Repetition with Application to High-Rise Building Design

Lauren L. Stromberg, Glaucio H. Paulino, William F. Baker

10th US National Congress on Computational Mechanics
Columbus, Ohio, USA

July 17th, 2009

Department of Civil and Environmental Engineering
University of Illinois at Urbana-Champaign

Skidmore, Owings & Merrill, LLP
Motivation: Functionally Graded Buildings

Unconstrained Problem

John Hancock Building

Patterns of Different Sizes

Pattern gradation and repetition with application to high-rise building design
Motivation: Functionally Graded Buildings

Pattern 1: Commercial

Pattern 2: Residential

Unconstrained Problem

Trump Tower

Groups of Patterns

Pattern gradation and repetition with application to high-rise building design
Outline

• Introduction and Motivation

• Topology Optimization Framework
 • Basic problem formulation

• Manufacturing constraints and pattern gradation
 • Uniform Density approach
 • CAMD approach
 • Projection scheme (length scale)

• Numerical Results
 • 2D
 • Graded thicknesses using Lagrange Multipliers
 • Building example in 3D

• Concluding Remarks
Topology Optimization Framework

• Minimum compliance problem in discrete form:

\[
\begin{align*}
\text{min:} & \quad c(\rho, u) \\
\text{s. t.:} & \quad K(\rho)u = f \\
& \quad \int_{\Omega} \rho \, dV \leq V_s
\end{align*}
\]

- Objective function
- Equilibrium constraint
- Volume constraint

• Solid Isotropic Material with Penalization (SIMP) model:

\[
E(x) = \rho(x)^p E^0, \quad p > 1
\]

Pattern gradation and repetition with application to high-rise building design
Manufacturing Constraints and Pattern Gradation

- Uniform Element Density Approach: design variables are coincident with element centroids (or nodes)

- CAMD Approach: design variables are nodal densities and shape functions used to obtain density throughout design domain

\[
\rho(x) = \sum_{e=1}^{n} \sum_{i=1}^{4} N_i^e(x) \rho_i^e
\]

- Update sensitivities:

\[
\frac{\partial c}{\partial \rho_d} = \sum \frac{\partial c}{\partial \rho_i^e} \frac{\partial \rho_i^e}{\partial \rho_d}
\]
Projection scheme with graded patterns

- Projection using element centroids or nodal densities as design variables

- Must use scaled projection for pattern gradation
Numerical Examples

- Graded cantilever building: Uniform Element Densities

Pattern gradation and repetition with application to high-rise building design

Pattern constraints | Design variables

Mesh: 80 x 240
cenal = 4, \(r_{\text{min}} = 1.2 \)
volume = 50%
Numerical Examples

- Patterns of Different Sizes: Uniform Element Densities

Mesh: 80 x 240
penal = 4, $r_{\text{min}} = 1.2$
Numerical Examples

- Multiuse Building
 w/ volume gradation

Pattern gradation and repetition with application to high-rise building design

Pattern 1: Commercial

Pattern 2: Residential

Unconstrained Volume (50%)

Mesh: 75 x 360
penal = 4, $r_{\text{min}} = 1.2$

With volume constraints
Virtual Work/Lagrange Multipliers for gradation in wall thicknesses

• Virtual Work

\[W_i = \int_A \left[N^T \delta \eta + M^T \delta \chi + V^T \delta \Gamma \right] dA \]

axial flexural shear

• Lagrange Method

\[\Delta = \Sigma_{plates} \xi_j + \lambda (\Sigma t_j A_j - V) \]

• Optimal thickness

\[t_i = \frac{1}{\Delta_{req}} \left(\frac{\nu_i}{A_i} \right)^{0.5} \Sigma_j \left(A_j \nu_j \right)^{0.5} \]

Virtual Work/Lagrange Multipliers for gradation in wall thicknesses

Pattern gradation and repetition with application to high-rise building design
Building Design Example

Skidmore, Owings & Merrill
Proposed Tower Design
Hong Kong

Proposed Topology Optimization Design using Pattern Repetition
1,728,000 design variables

N = 8
Mesh: 96 x 12 x 12
Volume = 50%
Concluding Remarks

• Manufacturing constraints in topology optimization allow for design of optimal buildings in terms of stiffness, cost, deflection, etc.

• Additional building design considerations, such as stability and nonlinear behavior are sources for future investigation.
Concluding Remarks

• The present approach may be extended for industry purposes by exploring computational expenses associated with non-coincident FEM displacement and design variable meshes to be used on a larger scale

• Future work includes optimization of large scale 3D problems using Topological Data Structure (TopS) integrated with finite element analysis and topology optimization

USNCCM X Presentation