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Introduction:

o The goal of optimal shape design is to find the most efficient shape of a
physical system

o The response is captured by the solution u, to a boundary value problem that
in turn depends on the given shape w

|2fQ J(w, uy,) where Bluy, v;w) =4£(v), W eV
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B(u,viw) = / Vu: [x,C" + (1= xw)
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Restriction setting:
o If X, X € L>(R; [0, 1]) such that x, — X in L}(R), then, up to a subsequence,
the associated state solutions also converge, i.e., uy, — ug in H($2; R9)

o It follows that compactness in L}(Q) topology is a sufficient condition for
existence of solutions

o A well-known example is the space of shapes with bounded perimeter:

A={xeBV(Q{0.1}): [,|Vx|dx < P}

Continuous parametrization:
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Regularization Regularization

Same solution?
AC L‘X’(Q; {O, 1}) Depends!

(Compact)
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Optimization problem:

Composite objective:

min F(p) == J(p) + R(p)
peA

J(p):/t-upds+>\/pdx
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A={peH (Q:0<p<1}
/Vup:Cp:Vvdx=/t~vds, Wwevy
Ja Jru
C,=pC"+(1-p")C

Performance functional:

Regularizer:
Admissible densities:

State equation:

Forward-backward splitting algorithm:
o We consider an optimization algorithm of the form:

1
Pns1 = argmin
peA 2T/7

Hp — o — T (p0)] H2+R(p)

The intuition is that the next iterate p,;; is close to the gradient descent
update on J, i.e., p, — T,J'(p,), while minimizing the regularizer R(p)

o Given constants 79 > 0 and 0 < 0 < 1, the step size parameter is set to be
T, = o7

where k, is the smallest non-negative integer such that 7, satisfies

1
F(pn) - F(pn+1) Z 277_” ”pn - pn+1”2

Tikhonov, small 8 Tikhonov, isotropic

Tikhonov, large 3 i

Tikhonov, anisotropic

Total variation

Improving convergence:
o We consider the following generalization:

. 1
o1 = argmin J(pn) + (S (0n), 0 = o) + 5 (0 — on. Hn (0 = pn)) + R(p)
peA 27,

where H, is a bounded linear positive-definite operator

o The reciprocal approximation of compliance is its Taylor expansion in the in-
termediate field p~!

Jrec(0: ) = J(0n) + (S (0n), p — pu) + % <p — Pn, QEl()p”) (p— pn)>

where E(p) = ppP~ ! [Vu, : (CT — C7) : Vu,] is the gradient of compliance.

o We embed the same type of approximation into our quadratic model by setting

QE(Pn)I
p”

Hy, = J:;C(p”; Pn) =

Performance of the algorithm:

Algorithm H, To | # lter. | # BT F OC
GP = 0.25 | 1000* 0 210.74 1.36e-4
GP — 0.5 568 79 210.68 8.94e-5
FBS Identity 1 316 0 210.97 9.94e-5
FBS Identity 2 215 154 210.91 9.8le-5
FBS Reciprocal | 1 186 0 211.03 9.36e-5
FBS Reciprocal | 2 91 39 211.00 9.75e-5

TM-FBS Identity 1 330 0 210.95 9.97e-5

TM-FBS Identity 2 151 78 210.94 5.90e-5

TM-FBS | Reciprocal 1 179 0 211.03 9.45e-5

TM-FBS | Reciprocal | 2 85 34  211.00 8.07e-5
MMA = = 1000%* = 213.39 1.91e-4




