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Figure 9. (a) Paper-made Miura-ori model. (b) An isometric view of the initial configuration of the numerical model and
boundary conditions for the bending simulation. The angleγ between two edges is used to specify the initial configuration of a
Miura-ori, which equals 118.27◦ for the compression simulation and 90◦ for the bending simulation. In the bending simulation,
support S1 restricts displacements in x-, y-, z-directions; S2 fixes x-, z-directions; S3 confines only x translations. Unit forces are
applied towards the−z directiononnodesmarkedwithblue circles. Displacement� ismeasured at oneof the loadingnodes as
the z-displacement, marked with a yellow circle (same node as S3). The blue dots show the nodes that are used to approximate
the global principal curvatures near the centre of the origami sheet. (c) A flattened unit cell of theMiura-ori. We take a= 0.02,
b= 0.02 and α = 60◦ for the simulations. (d) Illustration of the boundary conditions in the compression simulation from
a side view. (e) Side view of the boundary conditions for the bending simulation. (Online version in colour.)

where W and L are the bulk dimensions of a Miura-ori as depicted in figure 10b. Other measures of
the effect might be used to consider the large deformation nature of origami, such as the Poisson
function [53,54]. Here, we adopt the same tangential Poisson’s ratio definition as used for the
theoretical predictions to show that our proposed formulation is able to asymptotically capture
the correct kinematics of rigid origami. The theoretical Poisson’s ratio for a Miura-ori is given
as [26,29]

νLW =− tan2
(γ

2

)
, (4.4)

where angle γ is illustrated in figure 9b (close to the origin). We plot the tangential Poisson’s ratio
with respect to the folding ratio (i.e. L/Lunfold as shown in figure 10) of the Miura-ori, which equals
1 when the origami is fully flat, and 0 when fully folded. To get the numerical approximation, we
first interpolate the discrete values of W and L at all load steps to a continuous function using
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Figure 10. Compressed folding of Miura-ori. The in-plane compression starts from an almost flat state (i.e. at Linitial).
(a) Equilibrium path, displacement versus load factor (λ). The insets demonstrate the folded shapes along the compression
process. The black profiles in the three insets outline the unfolded planar pattern. (b) In-plane tangential Poisson’s ratio νLW
versus the folding ratio (L/Lunfold). The analytical solutions are obtained based on the formulae presented in [29]. (Online version
in colour.)

cubic splines, and then compute the Poisson’s ratio using equation (4.3). A very good agreement
is observed as shown in figure 10.

(ii) Non-rigid Miura-ori: bending

When the Miura-ori has non-rigid panels, it can present global out-of-plane deformations,
bending anticlastically into a saddle-shaped configuration. An elegant theoretical derivation
by Wei et al. [29] shows that the Poisson’s ratios of Miura-ori for in-plane and out-of-plane
infinitesimal deformation have equal magnitude, but opposite signs. The analytic bending
Poisson’s ratio is derived assuming that there are periodic small deformations of unit cells. For
a large global bending deformation, the unit cells of Miura-ori actually deform non-uniformly
throughout the sheet [26,29]. Therefore, the applicable range of this analytical expression for
the bending Poisson’s ratio is limited. The proposed numerical approach provides a way to
numerically predict the global bending behaviour of Miura-ori under large deformation. Because
the bending Poisson’s ratio is not well-defined for the large deformation case, we instead compute
the coupling ratio of the two principal curvatures of the sheet, i.e. −κx/κy, as shown in figure 11.
For small deformations, this coupling ratio equals the bending Poisson’s ratio as defined in
[29]. We adopt the values of input parameters for the compression test, except reduced bending
stiffness and stretching stiffness (kB

0 = 1 and C0 = 108), in order to represent non-rigid panels.
Boundary conditions are shown in figure 9b,e.

In the bending simulation, the Miura-ori is initially partially folded. The computation takes
about 7 s with �λ= 0.03. The analysis successfully predicts the saddle-shaped deformation of
the Miura-ori. The load-displacement curve is shown in figure 11a. The coupling ratio (−κx/κy) is
interpolated near the centre of the sheet using five nodes on the upper surface as marked with blue
dots in figure 9b. When the deformation is small (at point A), the ratio is close to 1.0, agreeing with
the analytical prediction. As the deformation gets larger, the unit cells deform heterogeneously
and the coupling ratio increases. The obtained deformation shows a qualitatively good agreement
with that of the paper-made model, as demonstrated in figure 11b,c.

(c) Pop-through defect of Miura-ori: bistability
Miura sheets may display a local bistable behaviour. Silverberg et al. [28] named such behaviour
as ‘pop-through defects’, and studied their influence on the mechanical properties of Miura-ori
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Figure 11. Bending of Miura-ori. (a) Equilibrium path, displacement� versus load factor λ. Displacement� is measured at
one of the loading nodes as the z-displacement, as shown in figure 9. (b) Two views of the final state (at point C) of the bended
Miura-ori, with pictures of both the paper model and the numerical model. (Online version in colour.)

structures. Figure 12a shows a regular configuration of Miura-ori, while on the side, figure 12b
shows a Miura-ori with a central unit cell in the ‘pop-through’ state. The ‘pop-through’
state can be achieved by applying a vertical force to a vertex until the unit cell pops into
another mechanically stable state. The soft bending of panels is the main contributor to this
phenomenon [28].

The deformation process that forms a ‘pop-through’ state has not been investigated yet, and
thus it is the subject of this study. We consider a Miura-ori structure with the same geometry as
the previous example presented in §4b. The Ogden-1 material model is used for bar elements.
Other material related parameters are: kF

0 = 0.1, kB
0 = 1, C0 = 1× 108, A= 1× 10−5. We consider

contact of adjacent panels by setting θ1 = 45◦, θ2 = 315◦. The initial state and boundary conditions
are shown in figure 12c. The initial load factor is �λ= 0.06 and the computational time is
approximately 11 s. Figure 13 shows the equilibrium path and different deformations under
various magnitudes of loading. The corresponding configuration at point C is the stable ‘pop-
through’ state when the structure is in self-equilibrium. The numerical simulation approximately
reproduces the formation of the ‘pop-through defect’ of the paper-made model. Under the given
load, the Miura-ori presents a typical curve of bistability with snap-through behaviour [39,46], as
indicated in figure 13.

(d) Multi-stability of the Kresling pattern
The Kresling pattern [50] is a type of cylindrical shell origami that has multi-stable behaviour
[55]. The nodes of the Kresling pattern lie on the intersection of two sets of helices (longitudinal)
and one set of circles (transverse). A commercial company has used the idea of Kresling pattern to
fabricate foldable wine bags as shown in figure 14a, which forms stable structures in both a folded
and deployed state (E.A. Paulino 2015, personal communication). In this example, we look at
the equilibrium path of such multi-stable behaviour using the proposed nonlinear bar-and-hinge
model.

According to Cai et al. [55], the multi-stability of this structure is due to the change of crease
lengths. In other words, the multi-stable behaviour originates from panel stretching, instead of
panel bending as in the previous example. The numerical model has three layers, each modelling
one section of the origami wine bag. We assign kF

0 = 1× 10−3, θ1 = 45◦, θ2 = 315◦ and C0 = 5× 107

as the basic material properties. The Ogden-1 material model is used for bar elements. The folding
stiffness is very small because we observe that the folding creases of the physical model (i.e.
the origami wine bag as shown in figure 14a) are quite soft. The cross-sectional areas of the bar
elements are 10−5. This pattern has only triangular panels and they are not further discretized
in the bar-and-hinge model. Therefore, there are no bending hinges. The boundary conditions

 on October 11, 2017http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


19

rspa.royalsocietypublishing.org
Proc.R.Soc.A473:20170348

...................................................

(a)

0.01
z

0
0.20

0.15
0.15

S6
S5

S4
S3

S2
S1

S12
S11

S10
S9

S8
S7

0.10
0.10

0.05 0.05y
x

0 0

side view side view

(c)

(d)

(b)

unit cell

a

a

b

bending line
folding line

Figure 12. TheMiura-ori ‘pop-through defect’. (a) The paper-madeMiura-ori model in a regular partially folded configuration.
(b) The Miura-ori model in the ‘pop-through’ state, which is a stable configuration. (c) The numerical model and boundary
conditions for simulation. The angle γ is 112.61◦. Support S1 fixes displacements in x-, y-, z-directions, S2–S6 fix displacements
in x-, z-directions and S7 fixes y-, z-displacements. From S8 to S12, restrictions only apply in the z-direction. Load is applied as
a unit force towards the−z direction on the node marked with blue circle. Displacement� is the z-displacement measured
at the loading node− also marked with a yellow circle. (d) A flattened unit cell of the Miura-ori. We take a= 0.02, b= 0.02
andα= 60◦. (Online version in colour.)

for the simulations are shown in figure 14b. The bottom of the tower is fixed on the ground in
all directions.

The investigation is conducted by applying uniform unit compression forces on the top nodes.
An initial load factor�λ= 0.032 is used. The execution time of the analysis is 4 s. The equilibrium
path shown in figure 14c draws the downward displacement of a top node versus the value of the
load factor. This diagram can be seen as a projection of the multi-dimensional equilibrium path
onto the specific plane of � and λ. It is interesting that the equilibrium path makes a U-turn
at point C, and then traces a path of almost identical projection as the previously passed. In
actuality, however, the two almost overlapping paths refer to completely different deformations,
as illustrated in figure 14c with the insets and figure 14e–g. For example, coincident points B
and D, on the first and second passes, respectively, refer to different stable states of the origami
structure, as shown in figure 14f,g. At point B, the middle layer is fully folded, while at point D,
the middle layer reopens. From the stored energy diagram, we can clearly see that B and D are
two different local minima. The distribution of stored energy verifies that, for such an origami
structure, the non-rigid behaviour comes mostly from the stretching deformation of the panels.

We note here that such multi-stable structures typically have many bifurcation points and
branches on the equilibrium paths; however, the solution solver (MGDCM) would only pick one
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Figure 13. (a) Equilibrium path,� versusλ, during the deformation process of a ‘pop-through defect’ onMiura-ori. The insets
show zoom-in views of the deformed Miura-ori near the central region. Reference of these insets to the global configuration
is illustrated in (b). (b) Several key frames of deformed configurations along the simulation, corresponding to the four points
(A–D) on the equilibriumpath. At stage C, the corresponding configuration is in a stable state, and the digital rendering shows a
similar configuration to the physical model shown in figure 12(b). The yellow dashed circles mark the zoom-in regions for insets
in (a). (Online version in colour.)

of the many branches. The choice of branch that the solver selects depends on many factors,
including the value of the initial load factor �λ. In general, the choice of branching appears to
be arbitrary. Despite this insufficiency of the nonlinear solver, this example indicates that our
nonlinear formulation is able to present the full picture of the deformation spaces of multi-stable
origami structures, because we (at least) captured two equilibrium states other than the initial
configuration in this example. Numerical techniques for bifurcation analysis [41] may allow us to
guide the nonlinear solver to follow a specific branch of the equilibrium paths, which is a possible
improvement of the current nonlinear bar-and-hinge model.

Guest & Pellegrino [31,56,57] investigated (numerically and experimentally) a multi-stable
triangulated cylinder, which has a similar geometry as the Kresling pattern, but whose nodes
are at the intersections of three helices; thus, the transverse edges form helices instead of separate
circles as in the Kresling pattern. In their numerical analysis, they simplified the structure into a
reduced model, following similar simplifications, as in our study. They conducted a displacement-
controlled simulation based on a force method, and found that the contribution of folding hinges
to the global mechanical behaviour is small, which agrees with our observation for the Kresling
pattern. By contrast, our fully nonlinear formulation uses a highly nonlinear constitutive model
of rotational springs to prevent the local intersection of panels, while they handled this issue
by adding extra constraints to the system of equations. These extra constraints eliminate the
possibility of spring-back of the folded region, which is likely to occur in practice, and is captured
in our simulations.
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Figure 14. The multi-stable Kresling origami tower. (a) An origami wine bag that has the shape of the Kresling pattern with
eight sides. (b) Geometry and boundary conditions of the numerical model. Each layer of the tower has a height of h= 0.05.
On each layer, the cross-sectional outline, which is a regular octagon, is placed inside a circle of radius r= 0.05. Supports are
indicated by red triangles, all of which restrict displacement in the x-, y-, z-directions. Unit forces are applied at nodes circled
in blue to the−z direction. Displacement� is measured as the z-displacement of the node marked with a yellow circle. (c)
Equilibrium path,� versusλ. The insets illustrate the global deformation of the origami at different points on the equilibrium
path. At point C, we can see that the top and middle layer have an equal chance to collapse, thus C refers to a bifurcation point.
(d) Stored energy profile along the simulation process. States A, B and D refer to three local minima on the profile. Energy
contributions from stretching deformation and folding deformation are distinguished by different colours. There is no bending
deformation considered in this simulation. (e, g) Stable configurations along the path (at points A, B and D) are demonstrated
using side views. We present both key frames from the numerical simulation and corresponding physical model configurations.
(Online version in colour.)

5. Conclusion
This paper presents a nonlinear formulation for simulating large displacements and deformations
of origami structures, based on the bar-and-hinge model, which is a reduced degree-of-freedom
model of origami as pin-jointed bar networks with virtual rotational springs. We hence achieve
a computationally efficient approach for understanding the nonlinear mechanics of origami
structures when panel deformations are taken into account. Numerical simulations show that
the formulation is able to capture key features of origami deformations on a global scale, such
as folding kinematics, bending curvatures and multi-stability. Its simplicity and efficiency allows
quick investigations of non-rigid origami structures when the global deformation is of primary
interest.
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When comparing both bar-and-hinge and shell element-based FE models, we note that their
simplifications are made at different levels: the bar-and-hinge model is a conceptual simplification
of the structural model, while the FE attempts to model the actual structural system while
introducing most simplifications at the formulation level. In this context, the bar-and-hinge model
is inherently discrete, while the shell element-based FE approaches are continuum-based (cf.
[16–19]). As a result, the discrete bar-and-hinge model provides a simpler representation of the
actual origami structure than continuous shell elements. For example, it can provide a simpler
origami model than those of FE shell models for a system of several components (e.g. facets, joints)
made with different materials. In essence, our present bar-and-hinge model provides insight
into the nonlinear behaviour of origami structures, and allows highly efficient and effective
simulations. It approximates the global behaviour of origami structures, but cannot provide
high-resolution minutia of local origami deformations.

The generality of the nonlinear bar-and-hinge structural analysis formulation offers space
for further improvement. The constitutive relationships of the bars and rotational springs can
be designed to better reflect the physical behaviours of specific origami structures. In addition,
because the formulation is compatible with arbitrary bar-and-hinge models, the discretization
scheme can be improved. Currently, the adopted discretization scheme is only applicable to
origami sheets with triangular and quadrilateral panels. Refined triangulation schemes may
be used to improve accuracy and to enable the analysis of origami structures with arbitrary
polygonal panels. Furthermore, global contact of the sheets may also be considered.
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Appendix A. Geometric terms of rotational spring elements
To accomplish the simplification from equations (2.29)–(2.32) to equations (2.33)–(2.36), the
following vector identity will be used frequently:

a× (b× c)= (a · c)b− (a · b)c. (A 1)

Following the procedure as described in [43], let us first simplify equation (2.29) as follows:

∂θ

∂x(r)
i

= −1
sin(θ )

rkj ×
‖m‖2n− (m · n)m
‖m‖3‖n‖ ,

= −1
sin(θ )

rkj ×
(

m× (n×m)
‖m‖3‖n‖

)
,

= −1
sin(θ )

rkj ×
(

m× (− sin(θ )‖m‖‖n‖rkj)

‖rkj‖‖m‖3‖n‖

)
,

= rkj ×m× rkj

‖rkj‖‖m‖2
,

= ‖rkj‖
‖m‖2 m. (A 2)
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Because equation (2.30) has the same structure as (2.29), following the same procedure,
equation (2.30) can be simplified to equation (2.34). Starting with equation (2.31) and using
equation (2.29), we can obtain equation (2.35) by the following transformations:

∂θ

∂x(r)
j

= −1
sin(θ )

(
(rij − rkj)×

‖m‖2n− (m · n)m
‖m‖3‖n‖ − rk� ×

‖n‖2m− (n ·m)n
‖n‖3‖m‖

)
,

= −1
sin(θ )

(
rij ×

m× (n×m)
‖m‖3‖n‖ − rk� ×

n× (m× n)
‖n‖3‖m‖

)
− ∂θ

∂x(r)
i

,

=− rij ×m× (−rkj)

‖rkj‖‖m‖2
+ rk� × n× rkj

‖rkj‖‖n‖2
− ∂θ

∂x(r)
i

,

= (rij · rkj)m

‖rkj‖‖m‖2
+ (rk� · rkj)n

‖rkj‖‖n‖2
− ∂θ

∂x(r)
i

,

=
(

rij · rkj

‖rkj‖2
− 1

)
∂θ

∂x(r)
i

− rk� · rkj

‖rkj‖2
∂θ

∂x(r)
�

. (A 3)

Similarly, equation (2.32) has the same structure as (2.31), thus equation (2.36) can be simplified
from equation (2.32).

Next, we will elaborate on the Hessian of rotation angles. The Hessian matrix appears in the
stiffness matrices of rotational spring elements. The Hessian contains 16 blocks of submatrices
(of size 3× 3), among which there are 10 independent blocks due to symmetry. For clarity, let us
define

A= rij · rkj

‖rkj‖2
and B= rk� · rkj

‖rkj‖2
. (A 4)

Therefore, we obtain the following relationships:

∂A

∂x(r)
j

= 1
‖rkj‖2

((2A− 1)rkj − rij), (A 5)

∂B

∂x(r)
j

= 1
‖rkj‖2

(2Brkj − rk�), (A 6)

∂A

∂x(r)
k

= 1
‖rkj‖2

(−2Arkj + rij) (A 7)

and
∂B

∂x(r)
k

= 1
‖rkj‖2

((1− 2B)rkj + rk�). (A 8)

In addition, let us define the operator ‘�’ as

a � b := a⊗ b+ b⊗ a, ∀a, b ∈R
3. (A 9)

Note that a � b results in a symmetric matrix. Then, the 10 independent blocks of the Hessian
matrix of the rotation angle with respect to the nodal coordinates are expressed as

∂2θ

∂(x(r)
i )2
=− ‖rkj‖
‖m‖4 (m � (rkj ×m)), (A 10)

∂2θ

∂(x(r)
� )2
= ‖rkj‖
‖n‖4 (n � (rkj × n)), (A 11)
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∂2θ

∂x(r)
i x(r)

k

= m⊗ rkj

‖m‖2‖rkj‖
+ ‖rkj‖
‖m‖4 (m � (rij ×m)), (A 12)

∂2θ

∂x(r)
� x(r)

j

= n⊗ rkj

‖n‖2‖rkj‖
− ‖rkj‖
‖n‖4 (n � (rk� × n)), (A 13)

∂2θ

∂x(r)
i x(r)

j

=− m⊗ rkj

‖m‖2‖rkj‖
+ ‖rkj‖
‖m‖4 (m � ((rkj − rij)×m)), (A 14)

∂2θ

∂x(r)
� x(r)

k

=− n⊗ rkj

‖n‖2‖rkj‖
− ‖rkj‖
‖n‖4 (n � ((rkj − rk�)× n)), (A 15)

∂2θ

(∂x(r)
j )2
= ∂θ

∂x(r)
i

⊗ ∂A

∂x(r)
j

+ (A− 1)
∂2θ

∂x(r)
i x(r)

j

−
⎛
⎝ ∂θ

∂x(r)
�

⊗ ∂B

∂x(r)
j

+ B
∂2θ

∂x(r)
� x(r)

j

⎞
⎠ , (A 16)

∂2θ

∂x(r)
j ∂x(r)

k

= ∂θ

∂x(r)
i

⊗ ∂A

∂x(r)
k

+ (A− 1)
∂2θ

∂x(r)
i x(r)

k

−
(
∂θ

∂x(r)
�

⊗ ∂B

∂x(r)
k

+ B
∂2θ

∂x(r)
� x(r)

k

)
, (A 17)

∂2θ

(∂x(r)
k )2
= ∂θ

∂x(r)
�

⊗ ∂B

∂x(r)
k

+ (B− 1)
∂2θ

∂x(r)
� x(r)

k

−
(
∂θ

∂x(r)
i

⊗ ∂A

∂x(r)
k

+ A
∂2θ

∂x(r)
i x(r)

k

)
(A 18)

and
∂2θ

∂x(r)
� x(r)

i

= 03×3. (A 19)

The symbol 03×3 means a 3× 3 zero matrix. Owing to symmetry, the other 6 blocks of the Hessian
matrix can be completed with the following identities:

∂2θ

∂x(r)
k x(r)

i
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i x(r)

k

)T
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�

=
⎛
⎝ ∂2θ

∂x(r)
� x(r)

j

⎞
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T

,
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,
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k x(r)

�

=
(
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� x(r)

k

)T

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A 20)

The terms shown above are not completely simplified, but they are sufficient for numerical
computation as they are free of any singularities.

Appendix B. Verification using finite differences
The correctness of the derived terms are verified by the FD method. We take an example of a
single rotational spring element (whose geometry is the same as in §4a). Let θ rotate from 0 to 2π .
We adopt the central difference formula [44] with a step size of δθ = 10−6. In the approximation
of the gradient ∇θ , the dihedral angles are computed using equation (2.27). In the approximation
of the Hessian matrix H, the gradient is computed using equations (2.33)–(2.36). The entries of
the gradient vector and Hessian matrix are approximated one by one. We define the following
measures of differences:

�g =max
i
|(∇θ )i − (∇θ )FD

i | (B 1)

and

�H =max
i,j
|Hij −HFD

ij |, (B 2)
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Figure 15. The difference between the analytical expressions and FD approximations versus the rotation angle θ (in degree)
for a single rotational spring element—see §4a and figure 7. (Online version in colour.)

where a quantity with superscript FD indicates that it is computed using the finite difference
approximation; otherwise, it is computed using the derived analytical formula. The differences
are plotted in figure 15 with respect to the dihedral angle θ . Note that due to the ill-conditioning of
the inverse cosine function near θ = 0 and π [44], the FD approximations for the gradient become
inaccurate near those angles. As a consequence, we find a comparably larger difference between
the analytical value and the FD approximation for the gradient near 0 and π than for other angles.
In general, the two approaches yield almost identical results for both the gradient and the Hessian,
which verifies the correctness of the analytical derivations.

Appendix C. Nomenclature
E Green-Lagrange strain tensor
m, n panel normals
rpq vector from node q to p
S second Piola-Kirchhoff stress tensor
�ûi

k, �ǔi
k intermediate displacement increments

�λi
k load factor increment at iteration k of increment i

�L(r) change of the axis length
� displacement measure
�g, �h difference between analytical expressions and FD approximations
η sign indicator
κ1, κ2 principal curvatures
λ load factor
λi

k load factor at iteration k of increment i
λi principal stretch along direction i
03×3 3× 3 zero matrix
B1, B2 compatibility vector and matrix
e1 unit vector [1 0 0]T
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F applied forces
H hessian of rotational angle with respect to nodal positions
I3×3 3-by-3 identity matrix
K(e)

bar elemental tangent stiffness matrix of a bar element

K(r)
spr elemental tangent stiffness matrix of a rotational spring element

R residual force vector
T(e)

bar internal force vector of a bar element

T(r)
spr Internal force vector of a rotational spring element

u(i) nodal displacements
v admissible virtual displacement
X undeformed configuration
x deformed configuration
μ, α, N Ogden material model parameters
∇θ gradient of rotational angle with respect to nodal positions
νLW tangential Poisson’s ratio
�λ initial load factor
Π total potential energy
ψ strain energy function of rotational springs
θ relative rotation angle between two adjacent triangles
A(i) undeformed cross-sectional area of bar i
C, C0 one dimensional tangent modulus and its initial value
i, j, k, � nodal indices
k tangent rotational stiffness
k0, θ1, θ2 parameters for the constitutive model of rotational springs
kF

0 , kB
0 folding stiffness and bending stiffness at neutral state, respectively

L, W global length and width of a Miura-ori (deformed)
L(i) undeformed length of bar i
L(r) undeformed length of a rotational hinge (axis)
Linitial initial length of the partially folded Miura-ori
Lunfold length of the flat Miura-ori pattern
M rotational resistance moment
Na, Nb linear shape functions of a bar element
Ubar stored energy in bars
Uspr stored energy in rotational springs
Vext work done by external force
W strain energy density function of bars
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