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Abstract

In this work, we explore the use of operator splitting algorithms for solving regularized structural topology optimization
problems. The context is a classical structural design problem (e.g., compliance minimization and compliant mechanism design),
parametrized by means of density functions, whose ill-posedness is addressed by introducing a Tikhonov regularization term.
The proposed forward—backward splitting algorithm treats the constituent terms of the cost functional separately, which allows
for suitable approximations of the structural objective. We will show that one such approximation, inspired by the reciprocal
expansions underlying the optimality criteria method, improves the convergence characteristics and leads to an update scheme
resembling the heuristic sensitivity filtering method. We also discuss a two-metric variant of the splitting algorithm that removes
the computational overhead associated with bound constraints on the density field without compromising convergence and quality
of optimal solutions. We present several numerical results and investigate the influence of various algorithmic parameters.
© 2014 Elsevier B.V. All rights reserved.
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1. Introduction

The goal of topology optimization is to find the most efficient shape of a physical system whose behavior is captured
by the solution to a boundary value problem that in turn depends on the given shape. As such, optimal shape problems
can be viewed as a class of optimal control problems in which the control is the shape or domain of the governing
state equation. These problems may be ill-posed, that is, they may not admit solutions in the classical sense, unless
additional constraints are imposed on the regularity of the admissible shapes. For example, the basic compliance
minimization problem in structural design, wherein one aims to find the stiffest arrangement of a fixed volume of
material, favors non-convergent sequences of shapes that exhibit progressively finer features (see, for example, [1]
and references therein). A manifestation of the ill-posedness of the continuum problem is that naive finite element
approximations of the problem may suffer from numerical instabilities such as spurious checkerboard patterns or
exhibit mesh-dependency of the solutions, both of which can be traced back to the absence of an internal length-
scale in the continuum description of the problem [2]. An appropriate regularization scheme, based on one’s choice
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of parametrization of the unknown geometry, must therefore be employed to exclude this behavior and limit the
complexity of the admissible shapes.

One such restriction approach, known as the density filtering method, implicitly enforces a prescribed degree of
smoothness on all the admissible density fields that define the topology [3]. Filtering is essentially a means to define
a space of admissible densities with an embedded level of regularity (cf. [4] for a more detailed discussion). This
method and its variations are consistent in their use of sensitivity information in the optimization algorithm since the
sensitivity of the objective and constraint functions are computed with respect to the associated auxiliary fields whose
filtering defines the densities. By contrast, the sensitivity filtering method [2], which precedes the density filters and
is typically described at the discrete level, performs the smoothening operation directly on the sensitivity field after a
heuristic scaling step. The filtered sensitivities then enter the update scheme that evolves the design despite the fact
that they do not correspond to the cost function of the optimization problem. While the sensitivity filtering has proven
effective in practice for certain problems (for compliance minimization, it enjoys faster convergence than the density
filter counterpart), a proper justification has remained elusive. As pointed out by Sigmund [5], it is generally believed
that “the filtered sensitivities correspond to the sensitivities of a smoothed version of the original objective function”
even though “it is probably impossible to figure out what objective function is actually being minimized”. This view
is confirmed in the present work, as we will show that an algorithm with calculations similar to what is done in the
sensitivity filtering can be derived in a consistent manner from a proper regularization of the objective. We should also
mention the recent work by Sigmund and Maute [6] in which the filtered sensitivities are shown to be consistent for
materials obeying a nonlocal constitutive law.

The starting point is the authors’ recent work [7] on an operator splitting algorithm for solving the compliance
minimization problem where a Tikhonov regularization term is introduced to address the inherent ill-posedness of the
problem. The derived update expression naturally contains a particular use of Helmholtz filtering, where in contrast to
density and sensitivity filtering methods, the filtered quantity is the gradient descent step associated with the original
structural objective. An observation made here is that if the gradient descent step in this algorithm is replaced by
the optimality criteria (OC) update, then the interim density has a similar form to that of the sensitivity filter and in
fact produces similar results (cf. Fig. 3). To make such a leap rigorous, we essentially embed the same reciprocal
approximation of the structural cost function that is at the heart of the OC scheme in the forward—backward splitting
algorithm. This leads to a generalization of the algorithm in [7] that is consistent, computationally efficient, and
demonstrably convergent. The embedding of the reciprocal expansions is carried out in the splitting framework by
means of their quadratic approximations, in the same spirit as Groenwold and co-workers [8,9], who extensively
studied the performance of such approximations, finding them to be comparable to the original expansions.

Within the more general framework presented here, we will examine the choice of move limits and the step size
parameter more closely and discuss strategies that can improve the convergence of the algorithm while maintaining
the quality of final solutions. We also discuss a two-metric variant of the splitting algorithm that removes the
computational overhead associated with the bound constraints on the density field without compromising convergence
and quality of optimal solutions. In particular, we present and investigate a scheme based on the two-metric projection
method of [10,11] that allows for the use of a more convenient metric for the projection step enforcing these bound
constraints. This algorithm requires a simple and computationally inexpensive modification to the splitting scheme
but features a min/max-type projection operation. We will see from the numerical examples that the two-metric
variation retains the convergence characteristics of the forward—backward algorithm for various choices of algorithmic
parameters. The details of the two types of algorithms are described for the finite-dimensional optimization problem
obtained from the usual finite element approximation procedure, which we prove is convergent for the Tikhonov-
regularized compliance minimization problem.

The remainder of this paper is organized as follows. In the next section, we describe the model topology
optimization problem and its regularization. A general iterative scheme — one that encompasses the previous work
[7] — for solving this problem based on forward—backward splitting is discussed in Section 3. Next, in Section 4,
the connection is made with the sensitivity filtering method and the OC algorithm, and the appropriate choice of
the approximate Hessian is identified. For the sake of concision and clarity, the discussion in these three sections is
presented in the continuum setting. In Section 5, we begin by showing that the usual finite element approximations of
the Tikhonov-regularized compliance minimization problem are convergent and derive the vector form of the discrete
problem. The proposed algorithms along with some numerical investigation are presented in Sections 6 and 7. We
conclude the work with some closing remarks and future research directions in Section 8.
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Fig. 1. Illustration of the prescribed boundary conditions defined on the design domain (2. In a density formulation, each admissible shape w C (2
can be associated with some density function p € L% (£2; [SP, l]).

Before concluding the introduction, we briefly describe the notation adopted in this paper. As usual, L”({2)
and H*(£2) denote the standard Lebesgue and Sobolev spaces defined over a domain {2 with their vector-valued
counterparts LP({2; R?) and H*(2; R?), and LP(2; K) = {felLP(2): f(x) € K ae.} for a given K C R.
Symbols A and Vv denote the min and max operators, respectively, and when applied to functions are taken pointwise.
Of particular interest are the inner product and norm associated with L2(£2), which are written as (-, -) and |-||,
respectively. Similarly, the inner product, norm and semi-norm associated with H¥(2) are denoted by (-, ) o Ik
and |-|;, respectively. Given a bounded and positive-definite linear operator B, we write (u, v)g = (u, Bv) and the

associated norm by |lulg = (u, u)gﬂ. Similarly, the standard Euclidean norm of a vector v € R™ is denoted by ||v||

and given a positive-definite matrix B, we define ||v||g = (VTBV)I/ 2. The ith components of vector v and the (i, j)th
entry of matrix B are written as [v]; and [B];;, respectively.

2. Model problem and regularization

We begin with the description of the compliance minimization problem which is used as the model problem in
this work. Let 2 € R? d = 2,3 be the extended design domain with sufficiently smooth boundary. We consider
boundary segments I'p and I’y that form a nontrivial partition of 32, i.e., [ p NIy = 0,002 = TpuU TN and
I'p has non-zero surface measure (see Fig. 1). Each design over (2 is represented by a density function p, that is, a
non-negative field bounded above by one, whose response is characterized by the solution u, € V to the elasticity
boundary value problem, given in the weak form by

a(u,v; p) =£L(v), VveV (1)

where V = {u € H'(2; RY) : u| I, = 0} is the space of admissible displacements and
a(u,v; p) = / pPCe(u) : €(v)dx, L(v) = f t-vds 2)
n I'y

are the usual energy bilinear and load linear forms. Moreover, €(u) = (Vu + vu’) /2 is the linearized strain tensor,
t € L?>(I'v: R?) is the prescribed tractions on I'y and C is the elasticity tensor for the constituent material. Ob-
serve that the classical Solid Isotropic Material with Penalization (SIMP) model is used to describe the dependence
of the state equation on the density field, namely that the stiffness is related to the density through the power law
relation p? [12—14]." The bilinear form is continuous and also coercive provided that p is measurable and bounded
below by some small positive constant 0 < §, < 1. In fact, there exist positive constants ¢ and M such that for all
p € L2 [8,,1]),

la@a,v; o)l < M lully IVll;,  a(,uwp)>clul}, Yuvel. A3)

I ' We use the classical SIMP parametrization with a positive lower bound on the densities. The reason is that later, we will consider Taylor
expansions in 1/p.
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Together with continuity of the linear form £ (which follows from the assumed regularity of the applied tractions),
these imply that (1) admits a unique solution u,, for all p € L°°({2; [8,,, 1]). Moreover, we have the uniform estimate
Juy ||, < ¢ l€ll, where [[€]| is the operator norm associated with £. We also recall that by the principle of minimum
potential, u,, is characterized by

u, = argmin |:la(v, v, p) — Z(V)] 4)
veV 2
where the term in the bracket is the potential energy associated with deformation field v. The following is a result
that will be used later in the paper and readily follows from the stated assumptions (see, for example, [15]): Given a
sequence {p,} and p in L*°(§2; [Sp, 1]) such that p, — p strongly in L?(§2), 1 < p < 00, the associate displacement
fields u,,, up to a subsequence, converge in the strong topology of H '(2;RY) to u,. This shows that if the cost
functional depends continuously on (p, u) in the strong topology of L?(£2) x H'(£2; R?), then compactness of the
space of admissible densities in L? ({2) is a sufficient condition for existence of minimizers of the cost functional.
The cost functional for the compliance minimization problem is given by

J(,o)zz(u,,)+,\/gpdx. %)

The first term in J is the compliance of the design while the second term represents a penalty on the volume of the
material used. Minimizing this cost functional amounts to finding the stiffest arrangement while using the least amount
of material with elasticity tensor C. The parameter A > 0 determines the trade-off between the stiffness provided by
the material and the amount that is used (which presumably is proportional to the cost of the design). Since the SIMP
model assigns smaller stiffness to the intermediate densities compared to the their contribution to the volume, it is
expected that in the optimal regime, the density function are nearly binary (taking only values of 6, and 1) provided
that the penalty exponent p is sufficiently large. Later, in Section 7, we will discuss algorithms for the optimization
problem featuring an explicit constraint on the volume of the structure.

As discussed in the introduction, the compliance minimization problem does not admit, in general, a solution in
L2, [Sp, 1]), necessitating the introduction of additional restrictions on the regularity of density functions. This
may be accomplished by the addition of a Tikhonov regularization term to the cost function [16,7,17] and considering:

L B
min J(p)=J(p)+ 3 (Vp,Vp). (6)

Here § > 0 1is a positive constant determining the influence of this regularization. The use of larger values of 8 leads to
smoother densities in the optimal regime and thus an appropriate value can be determined by means of trial-and-error
in order to satisfy the given manufacturing considerations. The dimensional analysis used by Dede et al. [18], in the
context of a phase field formulation, is also promising for a systematic selection of the regularization parameter. The
minimization of J is carried out over the set of admissible densities, defined as a subset of H'! ({2), given by

Az{peﬂl((z):apgpgla.e.}. )

The proof of existence of minimizers for (6) can be found in [7] (see also [19] for a weaker result) and essentially
follows from compactness of the minimizing sequences of (6) in LP(f2), 1 < p < oo. We note that the norm of
the density gradient also appears in phase field formulations of topology optimization (see, for example, [20-22,18])
as an interfacial energy term and is accompanied by a double-well potential penalizing intermediate densities. Taken
together with appropriately chosen coefficients, the two terms can serve as approximation to the perimeter of the
design.

Under additional assumptions of Vp -nm = OQon df2 and p € H 2(£2), the Tikhonov regularization term can be
written as

1
é/ Vp - Vpdx = £ [—/ pAdeJr/ p(Vp~n)dS} =~ (p,—BAp). ®)
2J0 2 0 202 2
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Fig. 2. Plot of E(p)—A for two solutions to the MBB beam problem with § = 0.01. (a) corresponds to the solution shown in Fig. 7(b) and (b)
corresponds to the solution shown in Fig. 7(c). The black line is the contour line for p = 1/2 and the dashed white line is the contour line where
E(p) = A. Note that only half the design domain is shown and the range of the colorbar is limited to [—X, 6A] for better visualization.

Similarly, the more general regularization term %(Vp, kVp) in which x(x) is a bounded and positive-definite
matrix, prescribing varying regularity of p in {2 and subsequently controlling feature size and orientation of the
optimal design, can be written as % (p, —V - (kVp)). For brevity and emphasizing the quadratic form of this type of
regularization, in the next two sections, we write the regularizer generically as

1

3 (0, Rp) 9

where R is a linear, self-adjoint and positive semi-definite operator on A, though the additional assumption on
densities are in fact not required (see also remarks in Section 3 of [7]).

Finally, we recall that the gradient of compliance, with respect to variations of density in the L2-metric, is given
by [19]

J'(p) = —E(p) + 4 (10)

where E(p) = pp? _ICe(up) : €(uy) is a strain energy density field. Note that E(p) is non-negative for any
admissible density and this is related to the monotonicity of the self-adjoint compliance problem: given densities
o1 and p> such that p; < p; a.e., one can show £(u,,) > £(u,,). This property is the main reason why we restrict
our attention in this paper to compliance minimization (though in Section 7, we will provide an example of compliant
mechanism design which is not self-adjoint). Observe that p is a stationary point of J if

E(p)(x) <A, if p(x) =36,
EP)(X) =1, ifd, <p(x) <1 (11)
E()(x) > A, ifp(x) = 1.

Thus, in regions where E(p) exceeds the penalty parameter A (regions that experience “large” deformation), density
is at its maximum. Similarly, below this cutoff value the density is equal to the lower bound §,. Everywhere else,
i.e., in the regions of intermediate density, the strain energy density is equal to the penalty parameter A.

Fig. 2 shows the distribution of E(p)—A for solutions to (6) obtained using the proposed algorithm (cf. Section 7
and Fig. 7(b) and (c)). Superimposed are the contour lines associated with p = 1/2 (plotted in black) representing the
boundary of the optimal shape and E(p) = A (plotted in dashed white). The fact that these lines are nearly coincident
shows that the solutions to the regularized problem, at least for sufficiently small regularization parameter g, are close
to ideal in the sense that they nearly satisfy the stationarity condition for the structural objective J.

3. General splitting algorithm

In this section, we discuss a generalization of the forward—backward splitting algorithm that was explored in [7] for
solving the regularized compliance minimization problem. The key idea behind this and other similar decomposition
methods [23-25] is the separate treatment of constituent terms of the cost function.

A general algorithm for finding a minimizer of J(p) consists of subproblems of the form:

1

1
ol L pallf, + 5 (0. Rp) (12)
Tn

Pt = argmin J(0n) +(p = pu, J'(p) + 5

peA,

where H,, is a bounded and positive-definite linear operator. Compared to (6), we can see that while the regularization
term has remained intact, J is replaced by a local quadratic model around p, in which H, may be viewed as an
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Fig. 3. (a) The solution to the MBB beam problem (see Section 6) using the sensitivity filtering method (consisting of (27) and (21)) (b) The
solution using the update steps (28) and (21). In both cases, F is taken to be the “Helmholtz” filter and the move limit was set to m,, = 0.25.

approximation to the Hessian of J evaluated at p,. The suitable choice of H, is an important issue explored in
this work. Note that constant terms such as J(o,) and (p,,, J (,o,,)) do not affect the optimization but are provided
to emphasize the expansion of J. Moreover, 1, > 0 is a step size parameter that determines the curvature of this
approximation. For sufficiently small 7, (large curvature), the approximation is conservative in that it majorizes (lies
above) J. This is crucial in guaranteeing descent in each iteration and overall convergence of the algorithm (see
Section 6).

We have included another limiting measure in (12), a minor departure from the above-mentioned references, by
replacing the constraint set .A by a subset .4, in order to limit the point-wise change in the density to a specified move
limit m,,. More specifically, we have defined

Av={peA:lp—pnl <myae}= {p eH' (D) :pF<p<p! a.e.} (13)
where in the latter expression

pr=08p Alon—mn).  pp =1V (py+mn). (14)

The use of move limits, akin to a trust region strategy, is common in topology optimization literature as a means
to stabilize the topology optimization algorithm, especially in the early iterations to prevent members from forming
prematurely. As we will show with an example, this is only important when a smaller regularization parameter is
used and the final topology is complex. Near the optimal solution, the move limit strategy is typically inoperative. Of
course, by setting m, = 1, we can get A = A, and recover the usual form of (12).

We can show that (12) is equivalent to

Pn+1 = argmin ||P — Put ”?Hn+r,,72) (1
peA,

where the interim density p,,  is given by

Pii1 = M+ 1R [Hupn — (o). (16)

This can be seen from the following identity, obtained by a direct expansion,
1 . |2 _ J 1 5 1 »
E ”,0 ~ Pnti ” (Hp+1aR) — J(pn) + <,0 ~ Pn; (pn)) + E lo— pn”’}—(n + 5 (0, Rp)

1 1
= Jon) + o 7o) = 5 el + 5 ok [, (17)

and noting that adding a constant term to the objective function or multiplying it by a scalar does not affect its
minimizer.
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Alternatively, the interim density can be written as an update where the gradient of J is scaled by the inverse of its
approximate Hessian, namely

p:+1 = pn— (Hp + TnR)71 (Hunpon + tRpon) + (Hy + TnR)71 [ann - TnJ/(,On)]
= pn+ (Hn + TnR)71 [_TnR)On - T)1J/(pn)]
= pn — (M + 7R~ [/ (on) + Rop]. (18)

Returning to (15), we can see that next density p,4] is the projection of the interim density, with respect to the norm
defined by H,, + 7,’R, onto the constraint space .4,. From the assumptions on H, and R and the fact that 4, is a
closed convex subset of H!(2), it follows that the projection is well-defined and there is a unique update 0,1 1.

By setting R = —BA, which corresponds to the regularization term of (6) and choosing H,, to be the identity
map Z, we recover the forward—backward algorithm investigated in [7]. In this case, the interim update satisfies the
Helmholtz equation

@ — wpa) [O:+1 = pn — T (pn) (19)

with homogeneous Neumann boundary conditions. Note that the right-hand-side is the usual gradient descent step
(with step size t,) associated with J (the forward step) and the interim density is obtained by applying the inverse
of the Helmholtz operator (the backward step), which can be viewed as the filtering of right-hand-side with Green’s
function of the Helmholtz equation.” As mentioned in the introduction, this appearance of filtering is fundamentally
different from density and sensitivity filtering methods. Moreover, the projection operation in this case is with respect
to a scaled Sobolev metric, namely (see expressions (3.18) and (3.19) in [7])

. 2 2
pntt = argmin [ p — oy |7+ BT [ — 054 [} (20)
PEAR
which numerically requires the solution to a box-constrained convex quadratic program. In [7], we also explored an
“inconsistent” variation of this algorithm where we neglected the second term in (20) and essentially used the L>-
metric for the projection step. Due to the particular geometry of the box constraints in .4, the L>-projection has the
explicit solution given by

Pnt1 = (p;‘+1 A pb) VY. 21

The appeal of this min/max type operation is that it is trivial from the computational point of view. Moreover, it
coincides with the last step in the OC update scheme [19]. However, this is an inconsistent step for the Tikhonov
regularized problem since p,1 need not lie in H'(£2). In fact, strictly speaking, (21) is valid only if A, is enlarged
from functions in H'(2) to all functions in L%({2) bounded below by ,o,'; and above by p,?. In spite of this
inconsistency, the algorithm composed of (19) and (21) was convergent and numerically shown to produce noteworthy
solutions with minimal intermediate densities. This merits a separate investigation since as suggested in [7], this
algorithm may in fact solve a smoothed version of the perimeter constraint problem where the regularization term is
the total variation of the density field. We will return to the use of L>-projection later in Section 6 but this time in a
consistent manner with the aid of the two-metric projection approach of [10,11].

4. Optimality criteria and sensitivity filtering

Whenever applicable, the so-called optimality criteria (OC) method is preferred to other gradient descent
algorithms of comparable simplicity in the structural optimization community. For example, we refer to [26] for a
relationship and comparison between the OC method and the gradient projection algorithm. Our interest here in the
OC method is that the density and sensitivity filtering methods are typically implemented in the OC framework.
Moreover, as we shall see, this examination will lead to the choice of H,, in the algorithm (12).

2 The designations “forward” and “backward” step come from the fact that (19) can be written as p* Z+ rn’R)_1 (I —1J ) Pn-

n+l =
—1
Similarly, (16) has the equivalent expression p;l" (I —+ rn'HEIR) (I - 'tn'H;l J’) On-

+17
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The interim density in the OC method for the compliance minimization problem, in the absence of regularization,
is obtained from the fixed point iteration

E(p,) 12
p;‘+1=pn[ (f )} = pu lex (o] (22)

Note that the strain energy density E(p,) and subsequently its normalization e, (p,) are non-negative for any
admissible density p, and therefore p; | is well-defined. Recalling the necessary condition of optimality for an
optimal density 6 stated in (11), it is evident that such p is a fixed point of the OC iteration. Intuitively, the current
density p, is increased (decreased) in regions where E(p,) is greater (less) than the penalty parameter A by a factor
of [ey, (p,,)]l/ 2 The next density p,+1 in the OC is given by the projection p: 41 in (21).

It is more useful here to adopt an alternative view of the OC scheme, namely that the OC update can be seen as
the solution to an approximate subproblem where compliance is replaced by a Taylor expansion in the intermediate
field p~! [27]. The intuition behind such an expansion is that, locally, compliance is inversely proportional to p. In
particular, p, ., can be shown to be the stationary point of the “reciprocal approximation” around p, defined by

Jrec(0; pn) = £(uy,) + <%" (o= pon) —E(pn)> + A fQ pdx. (23)

Note that the expansion in the inverse of density is carried out only for the compliance term, and the volume term,
which is already linear, is not altered. The expression for Jrec(p0; p,,) can be alternatively written as

2E(pn)

1
Jrec(ps pn) = J(pn) + (0 — ons I (pn)) + 3 <p = Pn, (0 — pn)> (24)
which highlights the fact that the (nonlinear) curvature term in (24) makes it a more accurate approximation of com-
pliance compared to the linear expansion. With regard to the OC update, one can show that the interim update satisfies
Jr’ec(p;‘:H; pn) = 0, and its L2-pr0jecti0n is indeed the minimizer of Jyec(p; pn) Over {p e L3(N) : ,o,'; <p <
u

oy ae.}.

We now turn to the sensitivity filtering method, which is described with the OC algorithm. Let F denote a linear

filtering map, for example, the Helmholtz filter ' = (I - rzA)_1 discussed before or the convolution filter of radius
r [28,15]

FW)x) = fg Fy(x — y)¥ (y)dy 25)

where the kernel is the linear hat function F,(x) = max (1 — |x| /r, 0). The main idea in the sensitivity filtering
method is that ey (p,) is heuristically replaced by the following smoothed version

!

€.(pn) = —F [pnen(pn)] (26)

n

before entering the OC update. Notice that the filtering map is applied to the scaling of e, (p,) by the density field
itself, which is not easy to justify. The interim density update is thus given by

F lpner(on)]
Pn

A key observation in this work is that if we replace the gradient decent step in forward—backward algorithm (cf. (19))
with the OC step, we obtain a similar update scheme to that of the sensitivity filtering method. More specifically, note
that (19) can be written as p% .| = F [pn — TuJ'(py)]. Substituting p, — 7,7’ (p,) with p, [ex(pn)]'/? gives

1/2
Pt = pa[Eo0]"* = pa { } = o2 F Loner (o172 27)

psr = F | outerton”] (28)

which resembles (27). In fact, as illustrated in Fig. 3, the two expressions produce very similar final results (in
particular, observe the similarity between the patches of intermediate density in the corners that is characteristic
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of the sensitivity filtering method). Of course, the leap from the forward—backward algorithm to (28), just like the
sensitivity filtering method, lacks mathematical justification. However, we will expand upon this observation and next
derive an algorithm similar to this empirical modification of the forward—backward algorithm in a consistent manner.

Embedding the reciprocal approximation

Recalling the role of the reciprocal approximation of compliance in the OC method, the key idea is to embed
such an approximation in the general subproblem of (12). We do so by choosing H,, to be the Hessian of Jyec(0; on)
evaluated at p,, namely

2E(pn)

n

Hu = Jioc(Pn; Pn) = 1. (29)
As noted in the introduction, the use of a quadratic approximation of the reciprocal and exponential expansions has
been studied extensively in [8,9]. Observe that here E(p) is a non-negative function for any admissible p but may
vanish in some subset of (2. This means that H, is only positive semi-definite and does not satisfy the definiteness
requirement for use in (12). We can remedy this by replacing E(p,) in (29) with E(p,) A §g where 0 < §p < A
is a prescribed constant. However, in most compliance problems (e.g., the benchmark problem considered later in
Section 7) the strain energy field is strictly positive for all admissible densities. In fact, the regions with zero strain
energy density do not experience any deformation and in light of the conditions of optimality (11) should be assigned
the minimum density. Therefore, to simplify the matters, we assume in the remainder of this section that the loading
and support conditions defined on {2 are such that E(p) > Sg almost everywhere for all p € L*°({2; [Sp, 1]).
Comparing the quadratic approximation of J with this choice of H, and the reciprocal approximation itself (cf.
(24)), we see that the difference is in their curvature terms (the linear terms of course match). The curvature of the
quadratic model depends on and can be controlled by t,, while the nonlinear curvature in Jr is a function of p.
Substituting (29) into (16), the expression for the interim density becomes

[2E(pn)
Pn
Multiplying by p,/ [2E(p,)] and simplifying yields

IT+uR P,>f+1 =2E(pn) + tu [E(on)-A] = 2+ 1) E(0n) — ThA. (30)

Tn Tn

Pn * = S5 ) 90 (o)
_I+ mtnn lon+l = Pn |:(l + 2 ) 26)\(10”)] . (31)

To better understand the characteristics of this update, let us specialize this to the case of Tikhonov regularization and
set T, = 1 (so that the quadratic model and the reciprocal approximation have the same curvature at p,). This gives

On  _ E _ 1
[I_ 2E(pn)ﬂA} Pnt1 = Pn [2 2el(pn)i|' (32)

First note that in the absence of regularization (i.e., 8 = 0), the update relation has the same fixed-point iteration form
as the OC update with the ratio e, (p,) determining the scaling of p,. The scaling field here is 3/2 — 1/ [2e5(pon)]
whereas in the OC method it is given by +/e; (0,). As shown in Fig. 4, the scaling fields and their derivatives coincide
in the regions where ¢) (p,) = 1, which means that locally the two are similar. The reduction in density is more
aggressive with this scaling when e; (p,) < 1 whereas the OC update leads to larger increase for e, (p,) > 1.

As with the forward—backward algorithm (cf. Eq. (19)), the presence of regularization again leads to the appearance
of Helmholtz filtering (the inverse of the left-hand-side operator) but with two notable differences. First, the right-
hand-side term now is an OC-like scaling of density instead of the gradient descent step (the same is true in (31) for
an arbitrary step size t,). Furthermore, the filtering is not uniform across the domain and its degree of smoothening is
scaled by p,,/ [2E (p,)]. The important result here is that, by embedding the reciprocal approximation of compliance
in our quadratic model, we are able to obtain a relation for the p;_ that features an OC-like right-hand-side and
its filtering, very much similar in form to the heuristic update scheme of (28) that was compared to the sensitivity
filtering.

We also remark that the right-hand-side of (31) for a general step size t, is related to the reciprocal expansions
in interim variable 1/ (o — L), used in the Method of Moving Asymptotes (MMA) [29], if the asymptote is set to
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Fig. 4. Comparison between scaling terms appearing in the OC update (black line) and right hand side of (32) (gray line). The OC is more
aggressive in regions e, (p,) > 1| and less aggressive when e (p,) < 1.

L, = p, (1 —1,). The interim update for MMA, before accounting for the box constraints and in the absence of
regularization, is given by

Pt = pu [ (1= 1) + T/er(on) | (33)

Similar to the case of 7, = 1, this scaling of p, is similar to the right-hand-side of (31) in regions where e, (p,) ~ 1.

Another key difference between the forward—backward algorithm and the OC-based filtering methods is that the
projection of p;" 11 defining the next iterate p,4+; in the forward—backward scheme is with respect to the metric
induced by H, + 1,R in contrast to the L2-projection given by (21). As discussed before, the L2-projection is
well-suited for the geometry of the constraint set .4, due to decomposition of box constraints. It may be tempting
to inconsistently use the interim density (31) with the L?-projection but this is not necessarily guaranteed to decrease
the cost function. Arbitrary projections of unconstrained Newton steps are not mathematically warranted. Numerically
one would observe that such an inconsistent algorithm excessively removes material and leads to final solutions with
low volume fraction.

In Section 6, we explore a variant of the splitting algorithm that is related to the two-metric projection method
of [10,11], and allows for the use of a more convenient metric for the projection step. This can be done provided that
the operator whose associated norm defines the gradient® is modified appropriately in the regions where the constraints
are active. More specifically, in the interim update step (cf. (18)), H, + 1, R is modified to produce a linear operator D,,
with a particular structure that eliminates the coupling between regions of active and free constraints. The projection
of the interim density given by

pis1 = pn— Dy [T (o) + Rpn] (34)

with respect to the L?-norm is then guaranteed to decrease the cost function. Note that when there are no active
constraints (e.g., in the beginning of the algorithm the density field takes mostly intermediate values), D,, = H,, + 1, R
and (31) holds for the interim update and its L2-projection produces the next iterate. In general, (31) holds locally for
the regions where the box constraints are not active (i.e., regions of intermediate density) and so the analogy to the
sensitivity filtering method holds in such regions.

To avoid some technical nuisances (that the L2—pr0jection on a closed convex subset of H!(£2) is not well-defined)
and the cumbersome notation required to precisely define D,, in the continuum setting (that may obscure the simple

3 Recall that B! f'(p) is the gradient of functional f with respect to the metric induced by B.
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procedure for its construction), we defer the details to Section 6 where we describe the algorithm for the finite-
dimensional optimization problem obtained from the usual finite element approximation procedure. The intuition
developed in the preceding discussion carries over to the discrete setting.

5. Finite element approximation

We begin with describing the approximate “finite element” optimization problem, based on a typical choice of
discretization spaces, and establish the convergence of the corresponding optimal solutions to a solution of the
continuum problem (6) in the limit of mesh refinement. Our result proves strong convergence of a subsequence
of solutions, and thus rules out the possibility of numerical instabilities such as checkerboard patterns observed in
density formulations. We remark that similar results are available for the density-based restriction formulations (see
for example [30,31,28]) and the proof is along the same lines. Such convergence results are essential in justifying
an approach where one first discretizes a well-posed continuum problem and then chooses an algorithm to solve the
resulting finite dimensional problem (this is the procedure adopted in this work). Then, with the FE convergence
result in hand, the only remaining task is to analyze the convergence of the proposed optimization algorithm, which
is discussed in Section 6.

5.1. Convergence under mesh refinement

Consider a partitioning of {2 into pairwise disjoint finite elements 7, = {Qe}’e:1 with characteristic mesh size 5.
Let A, be the FE discretization of A based on this partition:

Ahz{,oeCo(ﬁ):pmeGP(.Qe),Vezl,...,l}ﬂA (35)

where P(f2) is an appropriate space of functions defined on (2, containing at least first-order polynomials
(e.g., bilinear functions if {2, is a rectangular element). Similarly, we define:

Vi = [ueco(ﬁ;md) [ul g, € P(2). Ve =1,....1.¥i = 1,...,d}mv. (36)

We also assume that the mesh 7j, is chosen in such a way that the transition from I'p to 'y is properly aligned with
the mesh. In practice, both density and displacement fields are discretized with linear elements (e.g., linear triangles,
bilinear quads or linearly-complete convex polygons in two spatial dimensions). To avoid any ambiguity regarding
the definition of the FE partitions, we assume a regular refinement such that the resulting finite element spaces are
ordered, e.g., A, 2 Ay whenever i < h’. We consider the limit 2 — 0 to establish convergence of solutions under
mesh refinement. In what follows, C denotes a generic positive constant independent of A.
What is needed in the proof of convergence is the existence of an interpolation operator 7 : ¥V — V), such that for
allu e VN H2(12; RY)
o —Zpully < Chluly. (37)

Similarly, we need the mapping i, : A — Aj, for the design space such that ip — p as & — 0. The construction of
such interpolants is standard in finite element approximation theory and we refer the reader to [32].
The approximate finite element problem, specialized to Tikhonov regularization, is defined by

min Ji(0) = Ju(p) + 2 101 (38)
PGAh 2

In this expression, the approximation to J(p) is defined by

In(p) = E(upp) + 2 /Q pdx

where u, , € V, is the solution to the Galerkin approximation of (1) satisfying

a(uy p, Vi; ) = £(Vp), Vv, € V. (39)
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Here 7, is a projection onto the space of piecewise constant fields on 7, an example of which is given in the next
section. While it is possible to define the finite element approximation of the state equation without this projection,
we have included this in the present convergence analysis since the use of piecewise constant densities is common
practice in topology optimization and can simplify the finite element implementation (cf. [4]). In particular, this shows
that even though the choice of continuous densities is natural for .Aj, the discretization of the boundary value problem
can still be based on element-wise constant densities. Since mj, fixes piecewise constant fields, we have the following
estimate for the error in the projection of p € H'(£2) (cf. [32])

o =mnollo = Chlply - (40)

By the principle of minimum potential, we can write
. [1
L(uy ) = =2 min | za(vp, Vp; wp0) — £(v) | = max [28(vy) — a(Vi, Vi ThP)] . (41)
\2% 2 \2

From the above relation, it is easy to see that Vj, C V implies £(u, ;) < £(uy,,) for any given p. Since compliance is
uniformly bounded over L™ (£2; [8,, 1]), it follows that J, is also uniformly bounded over L>(£2; [8,, 1]) and all .

Consider a sequence of FE partitions 7; with & — 0 and let p, be the optimal solution to the associated finite
element approximation (38), i.e., the minimizer of jh in Aj,. We first show that the sequence pj, is bounded in H L.
To see this, fix kg in this sequence. If g, is the minimizer of J in Ay, (there is no approximation of the displacement
field involved here), then for & < hy,

J(n) < J(pny) (42)

since pp, € Ap, S Ap. Now, from the definition of p;,, we have

Tn(pn) < Tn(Bn) = J(Bn) + [Tn (o) — T (Bn)] < T (ong) + [In(Br) — T (Bn)] (43)

which, in turn, implies

§ lpnl? < T(ong) + [In(n) — J () — I (on)] - (44)

Since the term in the bracket is bounded in 4, it follows that lim sup,, | o |% < 00. Thus, the sequence p, is bounded in
H'(£2) and by Rellich’s theorem [33], we have convergence of a subsequence, which we shall again denoted by {,0;,},
strongly in L2(£2) and weakly in H'!(£2) to some p* € H'(2). To see that p* satisfies the bound constraints and thus
belongs to A, we can consider another subsequence for which the convergence is pointwise. We can show that 7y, oy,
also converges to p* strongly in L?({2) since by the triangle inequality and (40), we have

|7thon = p*||o = | on — p* |y + Imnon — oallo < |01 — p*|| o + Ch lonl; - (45)

Recall that |pp|; is bounded. Subsequently, by the remark made in Section 2, we can also conclude that uy, ,, — up=
in HY(2; RY) as h — 0.

We next show that p* is a solution to the continuum problem, thereby establishing the convergence of the FE
approximate problems. First, note that by lower semi-continuity of the norm under weak convergence,

2 ..
o[} < liminf |y} (46)

Furthermore, we can establish the convergence of u,, ; to u,« in H L2, RY) by noting that

”“ph»h —Upx|; = ”“rrhph —Upx ||| + H“mlph - uﬂh»hH]
M
= ”“ﬂhph — Upx ”1 + o ”“ﬂhph — Inuz,p, ”1

= ||u7ThPh — Up* ”1 +Ch |uﬂhph |2 (47)
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where the second inequality follows from Cea’s lemma [32] and last inequality follows from estimate (37). Hence
Uy, — Wpr in H'(2; RY) and so Jy, (pn) — J (p*). Together with the inequality (46), we have

J(p*) < liminf Jy (on). (48)
To establish optimality of p*, take any p € Aj,. The definition of pj, as the optimal solution to (38) implies

Jn(on) < Jn (inp) . (49)

Using a similar argument as above, we can pass (49) to the limit to show J(p*) < J(p).
5.2. The discrete problem

We proceed to obtain explicit expressions for the discrete problem (38) for a given finite element partition 7j,. For
each p;, € Aj, we have the expansion pj, (X) = Y ;- [2]x @k (X) where z is the vector of nodal densities characterizing
pn and {g}" ; the set of finite element basis functions for A;,. We assume that the basis functions are such that for

any z € [8,, 1]", the associated density field lies in [8,, 1] everywhere, and conversely any density field in .4 can

be identified with a vector of nodal densities in the closed cube [8,,, 1]m. This is satisfied, for example, if 0 < ¢ < 1
for all k. Moreover, the vector form for the Tikhonov regularization term is

L lonl} = 37 G (50)
where G is the usual finite element matrix defined by [Gl, = B [ o Vi - Veedx, which is positive semi-definite.
Similarly, the volume term f o pdx can be written as vz where [v] k= f 0 Prdx.

With regards to the projection map 7, used in the discretization of the state equation (cf. (39)), there are several
possible choices. One can simply take 7 to be the usual L2-projection onto the space of piecewise constant fields.
Here, we define m;, o to be the piecewise constant field whose value over an element is equal to the value of p at the
centroid of that element. More specifically, if X, denotes the location of the centroid of element (2,, we have

]
e =Y p(Xe) X2, (51)

e=1

where x, is the characteristic function associated with (2, (i.e., a function that takes value of 1 for x € {2, and zero
otherwise).

If {Ni}?: denotes the basis functions for the displacement field such that u;,(x) = ;1: 1 LUL;N; (x), the vector
form of (39) is given by

KU=F (52)

where the load vector [F]; = f ryt N;ds and the stiffness matrix is

l
[K];; = fn (non)? Ce(N;) : €(Nj)dx = Z[ph(xe)]”/ Ce(Ni) : €(N;)dx. (33)

e=1 e
Let us define the matrix P whose (e, k)-entry is given by [P].; = ¢x(X.). Then

m

pr(xe) =Y or(xe) [zl = ) [Pleg 2]y = [Pzl . (54)
k=1

k=1

The vector Pz thus gives the vector of elemental density values. Returning to (53) and denoting the element stiffness
matrix by [K.];; = f o, Ce(N;) : €(N;)dx, we have the simplified expression for the global stiffness matrix

]
K(z) = > ([Pzl.)" k.. (55)
e=1
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The summation represents the assembly routine in practice. We note that the continuity and ellipticity of the bilinear
form (cf. (3)) and non-degeneracy of the finite element partition imply that the eigenvalues of K(z) are bounded below
by c¢;, and above by M}, (see chapter 9 of [32]) for all admissible density vectors z € [8 05 l]m

The discrete optimization problem (38) can now be equivalently written as (with a slight abuse of notation for J
and J)

. 1
min J(z) = J(z) + -z’ Gz (56)
z€[8,,1]" 2
where
J(z) =FTU@) + vz (57)

and U(z) is the solution to K(z)U = F. Observe that matrices P and G, the vector v, as well as the element stiffness
matrices k, and load vector F are all fixed and do not change in the course of optimization. Thus they can be computed
once in the beginning and stored.

The gradient of J with respect to the nodal densities z can readily computed as

J (@) =-U@" 0K U@ + V. (58)
The expression for 9K can be obtained from (55). Defining the vector of strain energy densities [E(z)], =
p[Pz)?"' Uz)Tk, U(z), we have

VJ@z) = -PTE®@) + Av. (59)

With the first order gradient information in hand, we can find the reciprocal approximation* of compliance, expanded
about the point y, as

vl
[z]

Irec@y) = J () +h@=y) v+ Y ( ) (L2 — y)) [ -PTE®)) - (60)
k=1

The Hessian of Jiec(Z; y), evaluated at z =y, is a diagonal matrix with entries

2 T
h@) = dheoviy) = — [PTE®)] . k=1...om. (61)
[¥lk k

The entries of the vector E(y) are non-negative for all admissible nodal densities but can be zero and therefore Hessian
of Jrec(z; y) is only positive semi-definite.

6. Algorithms for the discrete problem

We begin with the generalization of the forward—backward algorithm for solving the discrete problem (56) before
discussing the two-metric projection variation. As in Section 3, we consider a splitting algorithm with iterations of the
form

. 1
Z,.1 = argmin Q;(z; Z,, T,) + EZTGZ (62)

L U
2;<2=<Zp;

where, compared to (56), the regularization term is unchanged while J is replaced by the following local quadratic
model around the current iterate z,,

1
0y(z; 2y, Tn) = J(2) + (2 — Zn)T VJ(zy) + ? lz — zn”%{n . (63)

4 The reciprocal approximation to the function f(x) at a point y is given by frec(X) = f(y) + kazl |:xk_ 1 Vi (X — yi) O f (y)]. One can
directly verify that frec(y) = f(y) and V frec(y) = V f(y).
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The move limit constraint is accounted for through the bounds

[z,li]k =8, A ([Zalx — M), [z}lj]k =1V ((zuJxg +my), k=1,...,m. (64)
In order to embed the curvature information from the reciprocal approximation (60) in the quadratic model, we choose

H, = diag(h1(z,), ..., hm(2,)) (65)

where fzk(z,,) = hy(z,) A 8 and, as defined before, 0 < §g <« A is a small positive constant. This modification not
only ensures that H,, is positive definite but also that the eigenvalues of H,, are uniformly bounded above and below,
a condition that is useful for the proof of convergence of the algorithm [34]. Observe that for all z € [6 05 l]m,

0 < i (z) <28, [E@)llos < 298,77~ My U@ < 2p8, 7~ My, |F||? (66)

where we used the fact that U'k,U < 8, "UTK(2)U < 8,” M}, ||U(z)||* and that the eigenvalues of K~ are bounded
above by C;I .

The step size parameter 7, in (62) must be sufficiently small so that the quadratic model is a conservative
approximation and majorizes J. If 7, > 0 is chosen so that the update z,, ;| satisfies

J(Zny1) < 0y (Znt1; Zn, T) (67)

then one can show [34]
- - 1
J @) = T @) = 5= 170 = Zaally, (68)
Tn

If z, is a stationary point of J, that is if (z — z,)" VJ(z,) > Oforall z € [6,, 1]", then 2,4 = 2, forall 7, > 0. To
see this, we write (62) equivalently as

. . 1
min (2= 2,)"VJ @) + 5 12 = 2l 1006 (69)

L U
2;<2<Z; n

Since H, + 7, G is positive definite and z, is a stationary point, the objective function is strictly positive for all

YAS [ZL zU] with z # z,, while it vanishes at z,, thereby establishing optimality of z, for subproblem (62). Otherwise,

n>~n
if z,, is not a stationary point of J, then z,,+1 # z, for sufficiently small 7,,, and (68) shows that there is a decrease in
the objective function. This latter fact shows that the algorithm is monotonically decreasing.
A step size parameter satisfying (67) is guaranteed to exist if J has a Lipschitz gradient, that is, for some positive

constant L,
IVJ(@) —VIWI < Llz-yll, Vz,yedom(J). (70

One can show J(z) < Qj(z;z,, 1,) forallz € [8,,, l]m if the step size satisfies

. 'H, > LI (71)

in the sense of quadratic forms, i.e., 7, g, — LIis positive definite [34]. This condition is in fact stronger than (67).

The step size 1, can be selected with a priori knowledge of the Lipschitz constant L but this may be too conservative
and may slow down the convergence of the algorithm. Instead, at each iteration, one can gradually decrease the step
size via a backtracking routine until z,4; satisfies (67). An alternative, possibly weaker, descent condition is the
Armijo rule which requires that for some constant 0 < v < 1, the update satisfies

J(20) — J (@ 41) = v 2y — 2011)" VI (22). (72)

Though the implementation of such step size selection routine is straightforward, due to the high cost of function
evaluations for the compliance problem (which requires solving the state equation to compute the value of J), the
number of trials in satisfying the descent condition must be limited. Therefore, there is a tradeoff between attempting
to choose a large step size to speed up convergence and the cost associated with the selection routine. As shown in
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the next section, we have found that fixing 7, = 1, generally eliminates the cost of backtracking routine and leads to
a stable and convergent algorithm. In some cases, however, the overall cost can be reduced by using larger step sizes.

As with the derivation of (15) and (18), ignoring constant terms in z, and rearranging, we can write (62)
equivalently as

. 2
Zy1 = argmin ||z —z)_ | Htn,G (73)
2k <z<zY
where the interim update z; 41 18 given by
Zi =2 - M+ 567 [Vian]. (74)

With the appropriate choice of step size (satisfying any one of the conditions (67), (71), or (72)) and boundedness
of H,,, it can be shown that every limit point of the sequence z, generated by the algorithm is a critical point of J.
For the particular case of quadratic regularization, it is evident from (74) that the algorithm reduces to the so-called
scaled gradient projection algorithm, and the convergence proof can be found in [34]. A more general proof can be
found in the review paper [35] on proximal splitting method though the metric associated with the proximal term,
ie, 12—z lify, 4r G in (62), is fixed there.

As seen from (62) or (73), the forward-backward algorithm requires the solution to a sparse, strictly convex
quadratic program subject to simple bound constraints which can be efficiently solved using a variety of methods,
e.g., the active set method. Alternatively, the projection of z; 41 can be recast as a bound constrained sparse least
squares problem and solved using algorithms in [36].

Two-metric projection variation

Next we discuss a variation of the splitting algorithm that simplifies the projection step (73) by augmenting the
interim density (74). More specifically, we adopt a variant of the two-metric projection method [10,11], in which the
norm in (73) is replaced by the usual Euclidean norm, and the scaling matrix H, + 7, G in the interim step (74) is
made diagonal with respect to the active components of z,,.

Let I, = I- U IY denote the set of active constraints where

I,Il‘ = {k i [zy ]k < 8p + € and [Vf(zn)]k > O} (75)
Y= {k [za]i > 1 — € and [Vf(zn)]k < 0} . (76)

Here € is an algorithmic parameter (we fix it at 10~> for the numerical results) that enlarges the set of active constraints
in order to avoid the discontinuities that may otherwise arise [10]. Then

0 ifi # jandi e l,orjel,

[H, + 7,G];; otherwise (77)

[Dy]ij = {
is a scaling matrix formed from H,, + 7,G that is diagonal with respect to /,, and therefore removes the coupling
between the active and free constraints. The operation in (77) essentially consists of zeroing out all the off-diagonal
entries of H,, + 1, G for the active components. Note that any other positive matrix with the same structure as D,, can
be used. The new interim density is then defined as

z,, =12, — D, [Vj(zn)] (78)
and the next iterate is given by the Euclidean projection of this interim density onto the constraint set
. 2
Z,41 = argmin Hz -z ” (79)
zh<z<zY

which has the following explicit solution

[Z”+1]k = ([zb]k A [Z:_H]k) v [Z,L,J]k , k=1,....m. (80)
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Since D,jIVJ~ (2,) can be viewed as the gradient of J with respect to the metric induced by D,,, we can see that the
present algorithm consisting of (78) and (79) utilizes two separate metrics for differentiation and projection operations.
The significant computational advantage of carrying out the projection step with respect to the Euclidean norm is due
to the particular structure of the constraint set. Compared to the forward—backward algorithm discussed before, at
the cost of modifying the scaling matrix, the overhead associated with solving the quadratic program (cf. (73)) is
eliminated.

As in the previous algorithm, one can show that z, is a critical point of J if and only if 2,4 = z, for all 7, > 0.
Similarly, if z, is not a stationary point, then for a sufficiently small step size, the next iterate decreases the value of
the cost function, i.e., J (Zn+1) < J (z,,). The choice of 1, can be again obtained from an Armijo-type condition along
the projection arc (cf. [10]), namely,

J(20) — J (2ns1) > vl VJ (2,) (81)

where the direction vector d,, is given by

[z, ]k — |20 kel
[dn1k={z (- Lol

[mnfvi@gh ke, (82)

In the next section, we will compare the performance of the forward—backward algorithm consisting of (73) and (74)
with the two-metric projection consisting of (78) and (80).

7. Numerical investigations

For all the results presented in this section, the constituent material C is assumed to be isotropic with unit Young’s
modulus and Poisson ratio of 0.3. The lower bound on the density is set to §, = 103 and, unless otherwise stated,
the SIMP penalty exponent is fixed at p = 3. The following backtracking algorithm is used to determine the value of
the step size parameter: given constants 7y > 0 and 0 < ¢ < 1, the step size parameter in the nth iteration is given by

1, = ok (83)

where k, is the smallest non-negative integer such that t,, satisfies (72) or (81). In practice, this means that we begin
with the initial step size 7p and reduce it by a factor of o until descent conditions are satisfied. The descent parameter
is set to v = 1073 and the backtracking parameter is & = 0.6. Note that larger v leads to a more severe descent
requirement and subsequently smaller 7,. Similarly, smaller o reduces the step size parameter by a larger factor
which can decrease the number of backtracking steps. Note, however, that using small step sizes may lead to slow
convergence of the algorithm.

Since each backtracking step involves evaluating the cost functional and therefore solving the state equation, as a
measure of computational cost, we keep track of the total number of backtracking steps (i.e., Y, k,) in addition to
the total number of iterations. The convergence criteria adopted here is based on the relative decrease in the objective
function

_ e — @] _

= (84)
| ()]
and the satisfaction of the first order conditions of optimality according to
1|z -V —Z
Ey— | 111241 Zn+D)] — Zns1 || o (85)

|21

Here II is the Euclidean projection onto the constraint set [8,, 1]” defined by [II(y)]; = (8, A [y];) V 1. Unless
otherwise stated, we have selected €; = 107> and e, = 107%.

MBB beam problem

The model compliance minimization problem adopted here is the benchmark MBB beam problem, whose domain
geometry and prescribed loading and boundary conditions are shown in Fig. 5. Using appropriate boundary conditions,
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Table 1

Summary of influence of various factors in the algorithm for the MBB problem with 8 = 0.06. The acronyms FBS, TMP,
MMA, and GP designate the forward—backward, two-metric projection, Method of Moving Asymptotes, and the gradient
projection algorithms, respectively. Fourth and fifth columns show the total number of iterations and backtracking steps.
The remaining columns show the final value of compliance £(u,), regularization term R(p) = B | pl% /2, volume fraction
V(ip) = I.Q\_1 jQ pdx, the regularized objective J(p), the relative change in cost function value E| and the error in
satisfaction of the first order conditions of optimality E5. The asterisk indicates that the maximum allowed iteration count
of 1000 was reached before the convergence criteria was met.

Algorithm H, 70 #it. # bt. £(up) R(p) Vi(p) j(p) Eq E,

FBS Identity 1.0 316 0 100.019 8553  0.512  210.965 9.962e—6  9.943e—5
FBS Identity 2.0 215 154 100.093 8.537 0.511 210914  9.178e—6  5.812e—5
FBS Reciprocal 1.0 186 0 99.937 8594 0513 211.032 9.769e—6  9.363e—5
FBS Reciprocal 2.0 91 39 100.095 8.568 0.512 211.008 4.926e—6  9.746e—5
TMP Identity 1.0 330 0 100.076 ~ 8.533  0.512 210951 9.958e—6  9.973e—5
TMP Identity 2.0 151 78 100.060 8556  0.512 210938  9.639e—6  5.900e—5
TMP Reciprocal 1.0 179 0 99.943 8.592 0.513  211.031 9.878e—6  9.453e—5
TMP Reciprocal 2.0 85 34 100.078 8578 0.512 210999 9.043e—6  8.074e—5
GP Identity 0.25 1000* 0 100.108 8.563 0.510 210.736  4.094e—6 1.557e—4
GP Identity 0.50 568 79 100.241 8.560 0.509 210.685 4.384e—6  9.691e—5
MMA - - 1000* - 98.871 9.889  0.523  213.388  5.795e—7 1.764e—4

l Fo1
h=1
Q w=06

Fig. 5. The design domain and boundary conditions for the MBB beam problem.

the symmetry of the problem is exploited to pose and solve the state equation only on half of the extended domain.
The volume penalty parameter is A = 200/ |{2| where | 2] is the area of the extended design domain.

We begin with the investigation of the behavior of the two splitting algorithms with different choice of parameters
discussed in the previous section. In particular, we compare the forward—backward algorithm with the two-metric
projection method and investigate the influence of the Hessian approximation. In addition to the choice of H,, defined
by (65), we also consider a fixed scaling of the identity matrix

H,=ol, n=12,... (86)

for which the algorithm becomes the basic forward—backward algorithm of [7] with the same proximal term in every
iteration. The scaling coefficient « is set to 4A A where A is the area of an element. This choice is made so that the step
size parameter 7, is on the same order of magnitude as with “reciprocal” Hessian. The other parameter investigated
here is the initial step size parameter tp and we consider two choices 79 = 1 and tp = 2. In all cases, the move limit
is fixed at m,, = 1 for all n and thus A, = A.

The domain for the MBB beam is discretized with a grid of 300 by 50 bilinear quadrilateral elements and the
Tikhonov regularization parameter is set to B = 0.06. The initial guess in all cases is taken to be uniform density
field p, = 1/2. All the possible combinations of the above choices produce the same final topology, similar to
the representative solution shown in Fig. 6. This shows the framework exhibits stable convergence to the same final
solution and is relatively insensitive to various choices of algorithmic parameters for this level of regularization. What
is different, however, is the speed of convergence and the required computational effort as measured by the number of
the backtracking steps, total number of iterations, and cost per iteration. The results are summarized in Table 1.
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Fig. 6. Final density field for the MBB problem and 8 = 0.06 plotted in grayscale. This result was generated using the TMP algorithm with 7y = 2
and m, = 1.

Fig. 7. Final densities plotted in grayscale for the MBB problem and g = 0.01. The results are generated using the TMP algorithm with (a) 7o = 2,
my =1,(b) 79 =1,my = 1and (c) 79 = 1, m, = 0.03.

First we note that the initial step size 7p = 1 does not lead to any backtracking steps which means that at
each iteration the step size parameter is t, = 1. By contrast, using the larger initial step size parameter tp = 2
sometimes requires backtracking steps to satisfy the descent condition but substantially reduces the total number of
iterations. Moreover, in all cases, the constant Hessian (86) requires nearly twice as many iterations and backtracking
steps compared to the “reciprocal” Hessian. This highlights the fact that embedding the reciprocal approximation of
compliance does indeed lead to faster convergence. Overall, the best performance is obtained using the reciprocal
approximation and larger initial step size parameter.

For this problem, the forward—backward algorithm and the two-metric projection method have roughly the
same number of iterations and backtracking steps. However, the cost per iteration for the two-metric projection is
significantly lower since the projection step is computationally trivial. Therefore, the two-metric projection is more
efficient.

Since the splitting algorithm presented here is a first-order method, it is also appropriate to compare its performance
to the gradient projection algorithm, which is among the most basic first-order methods for solving constrained
optimization problems. The next iterate in the gradient projection method is simply the projection of the unconstrained
gradient descent step onto the admissible space. In the absence of move limits and in the discrete setting, we have the
following update expression

. Tn 5 2
Z,4+1] = argmin Hz — [zn — —VJ(Z,,)] H 87
2e[8,,1]" o
where the scaling parameter « = 4AA is defined as before in order to allow for a direct comparison with the

forward—backward splitting in the case of H, = oI. We determine the step size parameter 7, at each iteration using
the backtracking procedure (83) based on the Armijo-type descent condition (72). Note that due to the simple structure
of the constraint set, computing the gradient VJ constitutes the main computational cost of the gradient projection
algorithm at each iteration. Table 1 shows the results for the same problem for two different choices of initial step size
parameter 7. First observe that the step sizes are smaller compared to the forward—backward algorithm, a fact that
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can be seen from the equivalent expression for (87) given by

21 = argmin J(z) + @ — 22)7 VI (2) + — 2 — Zall3y - (88)
ze[5,,1]" 2ty
0>

This shows that at each iteration, we construct a quadratic model for the composite objective J. By contrast, the
quadratic model in (62) is only used for J and the regularization term appears exactly. Since VJ hasa larger Lipschitz
constant compared to VJ, it is therefore expected that 7, must be smaller to ensure descent. It is also instructive to
recall the informal derivation of the forward—backward algorithm in [7] where the main difference with the gradient
projection algorithm was the use of a semi-implicit (in place of an explicit) temporal discretization of the gradient
flow equation. Note that the gradient projection algorithm converged to the same solution as before (cf. Fig. 6) though
in the case of 79 = 0.25, the convergence was too slow and we terminated the algorithm after 1000 iterations.

We also tested the performance of MMA [29] since it is perhaps the most widely used algorithm in the topology
optimization literature. We followed the common practice and used the algorithm as a black-box optimization routine.
In particular, we provided the algorithm with the gradient of composite objective J and did not make any changes
to the open source code provided by Svanberg.” MMA internally generates a separable convex approximation to J
using reciprocal-type expansions with appropriately defined and updated asymptotes. Though such approximations
are suitable for the structural term, they may be inaccurate for the Tikhonov regularizer and thus J. As shown in
Table 1, MMA did not converge (according to the convergence criteria described earlier) in 1000 iterations before
it was terminated. Furthermore, not only was the final value of the objective function larger than that obtained by
gradient projection or either splitting algorithm, the final density was also topologically different from the solution
shown in Fig. 6.

Next we investigate the performance of the algorithm for a smaller value of the regularization parameter which is
expected to produce more complex topologies. For the next set of results, we set 8 = 0.01. In all cases considered, the
forward-backward and the two-metric projection algorithms both give identical final topologies with roughly the same
number of iterations and so we only report the results for the two-metric projection algorithm. Also, as demonstrated
by the first study, the use of reciprocal approximation leads to better and faster convergence of the algorithm so we
limit the remaining results to the “reciprocal” H,,. The tolerance level e = 10™* for satisfaction of the optimality
condition is relatively stringent in this case due to the complexity of final designs (compared to § = 0.06) and leads
to a large number of iterations with little change in density near the optimum. We therefore increase the tolerance to
€2 = 2 x 10™* which gives nearly identical final topologies but with fewer iterations.

We examine the influence of the step size parameter and move limit, which unlike the previous case of large
regularization parameter, can lead to different final solutions. We consider two possible initial step size parameters
79 = 1 and 7y = 2, as well as two choices for the move limit m, = 1 and m,, = 0.03. Here we are using a fixed move
limit m,, for all iterations n. It may be possible to devise a strategy to increase m, in the latter stages of optimization
to improve convergence. The results are summarized in Table 2 and the final solutions are shown in Fig. 7.

First note that with no move limit constraints, i.e., m, = 1, the final solution with the more aggressive choice
of the initial step size parameter (79 = 2) is less complex and has fewer members compared to tp = 1, which as
before does not require any backtracking steps. Note, however, that the more aggressive scheme in fact requires more
iterations to converge. In the presence of move limits, there is no backtracking step with either choice of step size
but the larger step size does reduce the total number of iterations. The final topologies are identical and have more
members compared to the solutions obtained without the move limits. It is interesting to note that the overall iteration
count is lowest for g = 2 and m,, = 0.03 despite the limit on the change in density at each iteration. As noted earlier,
the use of move limits can stabilize the convergence of the topology optimization problem.

The overall trend that the more aggressive choice of parameters produce less complex final solutions is due to the
fact that member formation occurs early on in the algorithm. The most aggressive algorithm (g = 2, m,, = 1) still
produces the best solution as measured by J while the solution obtained enforcing the move limit m, = 0.03 has the
lowest value of compliance J.

5 We remark that MMA is used with some modifications by Borrvall in [16] where the behavior of various regularizations schemes, including
Tikhonov regularization, are compared.
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Table 2

Summary of the results for the MBB problem with § = 0.01.

Algorithm 19 my, #it.  #bt.  £(up) R(p) V() J(p Eq E,

TMP 1 1 138 0 102306 4.669 0474  201.779  6.989¢—6  1.978e—5

TMP 2 1 169 62 102.716 ~ 4.075 0472  201.189  9.780e—6  1.679%¢—5

TMP 1 0.03 153 0 100.738  5.185 0486 203.014 7.217e—6  1.998e—4

TMP 2 0.03 98 0 100.568  5.173 0486 202970 9.795e—6  1.566e—4
a

Fig. 8. Final densities plotted in grayscale for the MBB problem with 8 = 0.06 and SIMP penalty exponent (a), p =4 (b) p = 5.

We note that aside from the higher degree of complexity, the optimal densities for § = 0.01 contain fewer
intermediate values compared to the solution for 8 = 0.06. One measure of discreteness, used in [5], is given by

1
M(p) = o /94(p —38,) (1 p) dx (89)

which is equal to zero if p takes only values of §, and 1. For the solutions shown in Fig. 7, M (p) is equal to 6.98%,
7.64% and 8.90% from top to bottom, respectively. By contrast, the optimal density for § = 0.06 (cf. Fig. 6) has a
discreteness measure of 15.0%. By increasing the value of the SIMP exponent p, the optimal densities can be made
more discrete. The results for 8 = 0.06 using p = 4 and p = 5 are shown in Fig. 8. While the optimal topologies are
nearly identical to the solution for p = 3, the discrete measure is lowered to 13.1% and 12.1%, respectively. Observe,
however, that the layer of intermediate densities around the boundary cannot be completely eliminated even when p
is increased to a very large value since the Tikhonov regularizer is unbounded in the discontinuous limit of density.

As shown in the previous section, the optimal solutions to the discrete problem converge to an optimal solution of
the continuum problem as the finite element mesh is refined. We next demonstrate numerically that solutions produced
by the present optimization algorithms appear to be stable with respect to mesh refinement. We do so for 8§ = 0.01
using the two-metric projection algorithm with 7, = 1 where the final topology is relatively complex and the algorithm
is expected to be more sensitive. As shown in Fig. 9, we solve the problem using finer grids consisting of 600 x 100
and 1200 x 200 bilinear quadrilateral elements, which required 104 and 106 iterations, respectively. The final density
distribution is nearly identical indicating convergence of optimal densities in the L?-norm.

Explicit enforcement of volume constraint

We proceed to discuss the forward—backward splitting algorithm in the presence of an explicit constraint on
the volume of the design, as topology optimization problems are often formulated. Compared to the compliance
minimization problem considered so far with a volume penalty term appearing in the cost function (cf. Section 5.2),
here we have a given upper bound volume fraction 0 < @ < 1 limiting the volume of the design to O |2|. We are
thus asked to solve the following problem

- 1
min J(@z) + -2"Gz (90)
2€[5,,1]".V(2)<0 2
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Fig. 9. Results of the mesh refinement study with (a) 600 x 100 (b) 1200 x 200 elements.

where J(z) = FTU(z) is the compliance and V (z) = vl'z — 61 is the volume of the design associated with z. As
in Section 6, the forward—backward splitting algorithm for this problem involves iterations where J is replaced by a
convex quadratic approximation at the current design point with the regularization and constraints left intact. Thus,
the nth iteration is simply defined by

1
Zyy] = argmin 07(z; 2y, Ty) + -2 Gz ©n
z',;fzgz}f,V(z)gO 2

where, as before, Q+(z; z,, T,) = J(z,) + (z — zn)T Vj(zn) + Q) Nz -z, II%{H, with step size determined by the
Armijo condition, and the bounds are given in (64), accounting for the move limits introduced. Note that there is no
need for approximation of the volume constraint, since in the context of SIMP formulation, it is a linear constraint.
The subproblem (91) is a sparse convex quadratic program subject to linear constraints, and can thus be solved using
an appropriate large-scale quadratic programming algorithm. In our numerical studies, we have employed the interior-
point algorithm that is built in Matlab. We should also note that the subproblems need not be solved very accurately
in the early iterations, assuming that the approximation solutions still respect the bound constraints. The proof of
convergence of this algorithm is similar to that of the bound-constrained problem discussed in Section 6.

We will also consider here a heuristic version of the two-metric projection algorithm for solving (90). To this end,
we note that the dual problem for (91) is given by

max |: min  Q5(z; z,, T,) + lzTGz + kV(z):| = max |: min  Qy, (z; 2, T,) + lzTGz:| (92)
=0 | 2k <z<2V 2 A=0 | zb<z<zY 2

where J;(z) = J(z) + AV (z). The minimization is simply the bound-constrained problem of Section 6 with A as
the volume penalty parameter, and the outer maximization is a one-dimensional problem which can be solved, for
instance, using a simple bisection algorithm. Inspired by this, we consider the iteration defined by the two-metric
projection method of Section 6 as a surrogate for solution of the inner minimization, with A itself determined through
the bi-section algorithm. In other words, similar to the OC method for the volume-constrained problem (cf. [37]), each
iteration utilizes the bi-section method for determining the volume penalty parameter and, for each A, the candidate
iteration is defined by (80).

The results for the MBB problem, with prescribed volume fraction © = 0.5, and different initial step size 7o for
both algorithms are shown in Table 3. For these results, H,, is the “reciprocal” Hessian defined in (65) and m, = 1.
We can see that a large initial step size leads to faster convergence but requires more backtracking steps. Also, the
forward—backward splitting and the heuristic two-metric algorithm exhibited very similar trajectories, as evidenced by
a similar number of iterations and backtracking steps and nearly identical final solutions (a representative solution is
shown in Fig. 10). By comparison, the solution produced by MMA, though similar, has a larger value of compliance
and regularizer.

Compliant mechanism design

The discussion so far has been limited to the problem of compliance minimization which, as noted earlier, is self-
adjoint and its gradient has the same sign. We conclude this section with the design of a compliant force inverter for
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Table 3

Summary of the results for the MBB problem with 8 = 0.06 and prescribed volume fraction
of ® = 0.5. Here J(p) = J(p) + R (p). Convergence was determined only using the relative
decrease in the objective function J, as measured by E.

Algorithm 70 #it. # bt. L(up) R(p) V(p) J(p) E

FBS 1.0 315 0 102478  7.433  0.500 109912 9.664e—6
FBS 20 146 62 102.557  7.490  0.500 110.047  2.741e—6
TMP 1.0 325 0 102478  7.434  0.500 109912 9.806e—6
TMP 20 154 62 102.601  7.520 0.500  110.116  3.990e—6
MMA - 279 - 103.985  9.342  0.495 113332 6.177e—6

Fig. 10. Final density field for the MBB problem with 8 = 0.06 and subject to volume constraint with © = 0.5. This result was generated using
the FBS algorithm with 75 = 2.

which the cost functional is no longer self-adjoint and therefore, unlike compliance, the gradient field may take both
negative and positive values in the domain.

The objective of the mechanism design is to identify a structure that maximizes the force exerted on a workpiece
under the action of an external actuator. As illustrated in Fig. 11, the force inverter transfers the input force of the
actuator to a force at the prescribed output location in the opposite direction. We assume in this setting that both
the workpiece and the actuator are elastic and their stiffness are represented by vector fields k; € L°(Is,) and
ky € L®(Is,), respectively. Here Is,, I's, are segments of the traction boundary 'y € 0{2 where the structure
is interacting with these elastic bodies. The tractions experienced by the structure through this interaction for a
displacement field u can be written as

k,

ts, (w) = — (k, - w) Tk

onlys forr=1,2. (93)

Accordingly, the displacement u,, for a given distribution of material p in {2 is the solution to the following boundary
problem

a(up, v; p) +as(uy, v) =£4(v) VveV 94)
where

B (k) (k; - V)
as(u, v) = r;Z fp S st. (95)

>

The cost functional for the mechanism design problem is defined as

ﬂm:—/ ki - u,ds (96)
I's

1

which is a measure of the (negative of) force applied to the workpiece in the direction of k1, as seen from the following
relation:

Jr

Viewed another way, the minimization of (96) amounts to maximizing the displacement of the structure at the location
of the workpiece in the direction of k;.

k;
ki -u,ds = / [—tsl (up)] . mds. o7
5 1

1
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kg kl

Q
Fig. 11. The design domain and boundary conditions for the force inverter problem (left), the optimal topology for ||k || = 1, ||k || = 0.02 and
B = 1074 (middle), and optimal topology for [[ki|| = 1, |[ky|| = 103 and B = 10~3. For both problems, the prescribed volume fraction is

© =0.25.
The cost functional, in the discrete setting, is given by
J(z) = -L"U(z) (98)

where [L]; = f I, k; - N;ds and U(z) solves and, as before, U(z) is the solution to [K(z) + K] U = F. Here K is

the stiffness matrix associated with bilinear form as (-, -) and is independent of the design. The gradient of J can be
readily computed as VJ (z) = —PT E(z) where

[E®@], = p[Pzl!”' U kU@ (99)
and U(z) is the solution to the adjoint problem
[K(z) + K;]U = L. (100)

We refer the reader to [38,19] for more details on the formulation of the compliant mechanism design. It is evident
that VJ can take both positive and negative values. The main implication of this for the proposed algorithm is that the
reciprocal approximation of the cost functional is not convex and so we cannot use its Hessian directly in the proximal
term of the quadratic model. A simple alternative that we tested is to use (65) with the diagonal entries modified as

2 —
hi(y) = |— |P'E : 101
() ‘[y]k [P"Ewm)], (101)

Such an approximation has been previously explored in [8,9]. Other possibilities based on exponential expansions or
MMA-type reciprocal expansions featuring asymptotes can also be considered.

In the numerical studies for the compliant mechanism problem, we consider two cases with different ratio of
stiffness of workpiece and actuator, one of which is a proposed benchmark in [5]. Representative results along with
the value of parameters used are provided in Fig. 11. The mesh used for this problem consists of 160 x 160 bilinear
quadrilateral elements. Moreover, a volume constraint, with © = 0.25, is explicitly enforced. Table 4 contains a
summary of performance of the two-metric projection algorithm, discussed in the previous subsection, for different
initial step sizes, as well as MMA. For both examples, the results using the splitting algorithm are nearly identical and
outperform the solution produced by MMA. Another noteworthy fact is that one-node hinges, typically encountered
in the solution of compliant mechanism problems, appear to be sufficiently penalized by the Tikhonov regularizer.

8. Concluding remarks

The rather restricted and narrow comparison with the gradient projection algorithm and MMA in the previous
section is meant to motivate the virtue of developing tailored algorithms for each problem at hand. In the splitting
algorithm proposed here, we use additional knowledge about the behavior of J to construct accurate approximations
using only first order information and minimal storage requirements. Furthermore, the two-metric approach allows
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Table 4

Summary of the results for the force inverter problem. Here J(p) = T(p) + R(p). Convergence was determined here
only using the relative decrease in the objective function J, as measured by E7.

Problem Algorithm ) #it. # bt. J(p) R(p) V(p) J (p) Eq
TMP 0.5 315 0 —0.3063  0.0131 0.250 —0.2932  2.159¢—6
1K1/ Kyl = 50 TMP 1.0 193 0 —0.3080 0.0133  0.250 —0.2947 9.821e—6
1 20 = TMP 1.5 158 0 —0.3090 0.0132 0.250 —0.2958  9.593e—6
MMA - 344 - —0.2959 0.0134 0.249 —0.2826 1.649¢—6
TMP 0.5 368 0 —1.5180  0.1081 0.250 —1.4099  8.806e—6
1K1/ Kyl = 1000 TMP 1.0 283 21 —1.5186 0.1096 0.250 —1.4090 8.789¢—6
1 20 = TMP 1.5 189 64 —1.5149  0.1072  0.250 —1.4075 8.184e—6
MMA - 300 - —1.4628  0.0999 0.250 —1.3629 6.422¢—6

for a computationally efficient treatment of the constraint set. In fact, the proposed approach is aligned with the
renewed interest in first-order convex optimization algorithms for solving large-scale inverse problems in signal
recovery, statistical estimation, and machine learning [39-42]. We note that, aside from efficiency, robustness is also
a major issue for solving topology optimization problems (see, for example, comments in [16] on total variation
regularization). Although the high sensitivity to parameters is, to a large extent, intrinsic to the size, nonconvexity
and sometimes nonsmoothness of these problems, we emphasize that it should be minimized as much as possible.
Developing an appropriately-designed optimization algorithm that fits the structure of the problem can be key to
achieving this.

In the extensions of this work, we intend to consider nonsmooth regularizers such as the total variation of density
within the present variable metric scheme. This would require the extension of available denoising algorithms (e.g. [43,
41]) for solving the resulting subproblems at each iteration. Also of interest is the use of accelerated first order methods
such as those proposed in [44,45] that can improve the convergence speed of the algorithms. Developing a two-metric
variation of such algorithms for the constrained minimization problems of topology optimization is promising.
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