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Abstract

The Boundary Node Method (BNM) represents a coupling between Boundary Integral Equations (BIEs) and Moving Least Squares (MLS)
approximants. The main idea here is to retain the dimensionality advantage of the former and the meshless attribute of the latter. The result is
a ‘meshfree’ method that decouples the mesh and the interpolation procedures. The BNM has been applied to solve 2-D and 3-D problems in
potential theory and linear elasticity. The Hypersingular Boundary Element Method (HBEM) has diverse important applications in areas
such as fracture mechanics, wave scattering, error analysis and adaptivity, and to obtain a symmetric Galerkin boundary element formulation.
The present work presents a coupling of Hypersingular Boundary Integral Equations (HBIEs) with MLS approximants, to produce a new
meshfree method — the Hypersingular Boundary Node Method (HBNM). Numerical results from this new method, for selected 3-D
problems in potential theory and in linear elasticity, are presented and discussed in this paper. © 2001 Elsevier Science Ltd. All rights

reserved.
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1. Introduction

Conventional computational engines such as the Finite
Difference Method (FDM), Finite Element Method
(FEM), and the Boundary Element Method (BEM) require
meshing of either the domain (FEM and FDM) or the
surface (BEM) of a solid body. Although significant
progress has been made in 3-D meshing algorithms (see
Mackerle [1]), the task of meshing a 3-D object with
complicated geometry can be arduous, time consuming,
computationally cumbersome and expensive. Such short-
comings are greatly amplified when one considers problems
with changing geometry such as crack propagation, finite
deformation, and phase change or shape optimization. The
main difficulty in these problems is the task of re-meshing a
3-D object many times during a solution process.

1.1. Meshfree methods

In recent years, novel computational algorithms have
been proposed that circumvent some of the problems asso-
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ciated with 3-D meshing. These methods have been collec-
tively referred to as ‘meshfree’ or ‘meshless’ methods.
Nayroles et al. [2] proposed a method called the Diffuse
Element Method (DEM). The main idea of their work is
to replace the usual FEM interpolation by a ‘diffuse approx-
imation’. Their strategy consists of using a moving least-
squares approximation scheme to interpolate the field vari-
ables — these are called MLS interpolants in Ref. [2]
(called MLS approximants in this work). Nayroles et al.
[2] have applied the DEM to 2-D problems in potential
theory and linear elasticity.

Meshfree methods proposed to date include the Element-
Free Galerkin (EFG) method (Belytschko et al. [3]), the
Reproducing Kernel Particle Method (RKPM) [4], h—p
clouds [5-7], the Meshless Local Petrov-Galerkin
(MLPG) approach [8,9], the Local Boundary Integral
Equation (LBIE) method [10], the Natural Element Method
(NEM) [11], the Generalized Finite Element Method
(GFEM) [12] — see Moés et al. [13] for related work)
and the Boundary Node Method (BNM). The main idea in
the EFG method is to use Moving Least Squares (MLS)
approximants to construct the trial functions used in the
Galerkin weak form. A wide variety of problems have
been solved using the EFG method. In the introductory
paper by Belytschko et al. [3], the EFG method was applied
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to 2-D problems in linear elasticity and heat conduction.
Since then, the method has been applied, for example, to
solve problems in elasto-plasticity [14], fracture mechanics
[15], crack growth [16,17], dynamic fracture [18,19,20],
elasto-plastic fracture mechanics [21,22], plate bending
[23], thin shells [24], and sensitivity analysis and shape
optimization [25]. A special issue of the journal Computer
Methods in Applied Mechanics and Engineering contains
review articles by Belytschko et al. [26] and Liu et al.
[27], in addition to various other research papers on mesh-
less methods. Another source of information on the RKPM
is an overview article by Liu et al. [28].

1.2. Hypersingular Boundary Element Method (HBEM)

Hypersingular Boundary Integral Equations (HBIEs) are
derived from a differentiated version of the usual boundary
integral equations (BIEs). HBIEs have diverse important
applications and are the subject of considerable current
research (see, for example, [29-32] for recent surveys of
the field). HBIEs, for example, have been employed for the
evaluation of boundary stresses (e.g. [33—36]), in wave scat-
tering (e.g. [37]), in fracture mechanics (e.g. [31,38—41]), to
obtain symmetric Galerkin boundary element formulations
(e.g. [42—-45]), to obtain the hypersingular boundary contour
method [46,47], and for error analysis [48—52] and adaptivity
([51,52]). A lively debate (e.g. [53,54]), on smoothness
requirements on boundary variables for collocating an
HBIE on the boundary of a body, has apparently been
concluded recently [55], see also Ref. [52]).

1.3. BNM

Mukherjee and Mukherjee [56] have recently proposed a
meshfree method called the BNM. The BNM has been used
for 2-D problems in potential theory [56] and linear elasti-
city [57], for 3-D problems in potential theory [58] and
linear elasticity [59], and for error analysis and adaptivity
[51]. This method is a combination of the MLS approxima-
tion scheme and the standard BIE method. The method
divorces the traditional coupling between spatial dis-
cretization (meshing) and interpolation as commonly prac-
ticed in the FEM or in the BEM. Instead, a ‘diffuse’
approximation, based on MLS approximants, is used to
represent the unknown functions; and surface cells, with a
very flexible structure (e.g. any cell can be arbitrarily sub-
divided without affecting its neighbors), are used for
integration (Fig. 1). Thus, the BNM retains the meshless
attribute of the EFG method and the dimensionality advan-
tage of the BEM. As a consequence, the BNM only requires
the specification of points on the 2-D bounding surface of a
3-D body (including crack faces in fracture mechanics
problems), together with unstructured surface cells, thereby
practically eliminating the meshing problem that has been
referred to previously. In contrast, the FEM needs volume
meshing, the BEM needs surface meshing, and the EFG
needs points throughout the domain of a body.

Fig. 1. BNM or HBNM input data structure: cells and collocation nodes.

1.4. Outline of this paper

The HBNM is obtained by combining the HBIE for a
given boundary value problem with MLS approximants.
The HBNM is derived from the appropriate HBIE, for
potential theory and for linear elasticity, and is then numeri-
cally implemented in the present paper.

This paper is organized as follows. A brief literature
review is provided in this Section. Next, Section 2
presents MLS approximants, including a technique for
evaluation of tangential derivatives on the boundary.
Section 3 reviews the standard BIE employed in the
traditional collocation-based BEM, and Section 4 its
corresponding meshless version called the BNM.
Section 5 presents the HBIE and Section 6 the
HBNM, which is obtained from the corresponding
HBIE. Numerical results from the HBNM, for problems
in potential theory and in linear elasticity, are presented
in Section 7. Several aspects of the HBNM, such as
position of collocation nodes, determination of geode-
sics, range of influence of nodes, solution at internal
points, accuracy and convergence properties, are inves-
tigated in Section 7. Finally, some concluding remarks
are presented in Section 8. Appendix A completes the

paper.

2. Surface approximants

A moving least-squares (MLS) approximation scheme,
using curvilinear coordinates on the surface of a 3-D solid
body, is suitable for the BNM. Such a scheme for problems
in potential theory [58] and for linear elasticity [59] is
briefly described here and employed in the theoretical and
numerical schemes that follow.

2.1. MLS approximants

It is assumed that, for 3-D problems, the bounding surface
dB of a solid body is the union of piecewise smooth
segments called panels. On each panel, one defines surface
curvilinear coordinates (s, s,). For 3-D problems in potential
theory, let u be the potential function and 7 = du/dn the flux.
(Here n is an unit outward normal to B at a point on it). For
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3-D linear elasticity, let u denote a component of the displace-
ment vector u and 7 be acomponent of the traction vector 7 on
dB. One defines:

u(s) = > pi(s —sHa; = p'(s — sH)a,

i=1

m (D
Ts) = > pi(s — s")b; = p’ (s — s“)b.

i=1

The monomials p; (see below) are evaluated in local
coordinates (s; — st, s, — 55), where (s%, s%) are the global
coordinates of an evaluation point E. It is important to state
here that a; and b; are not constants. Their functional depen-
dencies are determined later. The name ‘MLS’ arises from
the fact that the quantities a; and b; are not constants. The
integer m is the number of monomials in the basis used for
u and 7. Quadratic approximants, for example, are of the
form:

PT(§1,§2) = [1,51,52,5%,5%,5152],
2

- E .
m=6, §;=s—s7; i=1,2.

The coefficients a;, and b; are obtained by minimizing the
weighted discrete L, norms:

R, => wi@lp"(s' —s"a -],
=1
] 3)
R, => wi@Ip’(s' —s)b - #1%,
I=1

where the summation is carried out over the n boundary
nodes for which the weight function satisfies the inequality
wi(d) # 0. (Weight functions are defined in Section 2.3).
The quantity d = g(s,s;) is the length of the geodesic on
0B between s and s'. These n nodes are said to be within the
domain of dependence of a point s (evaluation point E in
Fig. 2(a)). Also, (si - sf , sé - sf ) are the local surface coor-
dinates of the boundary nodes with respect to the evaluation
points s = (s, s5) and #; and #; are the approximations to
the nodal values u; and 7;. These equations above can be
rewritten in compact form as:

R, = (P(s' — sP)a — @) W(s, s (P’ — s5)a — a), 4)

R, = (Ps' —s5b — #) W, sH(PE —sEHb — %),  (5)

AT A A A AT A A N 1 .
where @' = (liy, 0y, ..., 0,), ¥ = (F|,%,...,Ty), P(s') is
an n X m matrix whose kth row is:

(1, po(sk, 85), oo P(sh, 81

and W(s,s') is an n X n diagonal matrix with wy = wi(d)
(no sum over k). A typical weight function w;(d) is shown in
Fig. 2(b) and is discussed in Section 2.3.

The stationarity of R, and R,, with respect to a and b,
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Fig. 2. Domain of dependence and range of influence. (a) The nodes 1, 2
and 3 lie within the domain of dependence of the evaluation point E. The
ranges of influence of nodes 1, 2, 3 and 4 are shown as gray circles. The
range of influence of node 4 is truncated at the edges of the body.
(b) Gaussian weight function defined on the range of influence of a node.

respectively, leads to the equations:
ais) = A" '(9B(s)i,  b(s) =A"'(s)B(s)7, (6)

where

A(s) =PI (s' — s")W(s,s)P(s' — s5),
(7N
B(s) =P’ (s’ — s*)W(s, s").

It is noted from above that the coefficients a; and b; turn
out to be functions of s.
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Substitution of Eq. (6) into Eq. (1) leads to:

ws) =Y )iy, =D Ps), ®)
I=1 I=1
where the approximating functions are @; are:

m

Dy(s) = Zp,(s — s )ATB)(s). ©)

j=1

As mentioned previously, @ and 7 are approximations to
the actual nodal values u and 7. The two sets of values are
related by Eq. (8). Discretized versions of Eq. (8) can be
written as:

(H]{i} = {ue}, (HI{7} = {n}, k=123

(10)

Eq. (10) relate the nodal approximations of u and 7 to their
nodal values.

2.2. Surface derivatives

Surface derivatives of the potential (or displacement)
field u are required for the HBIE. These are computed as
follows. With

C=A"'B

Egs. (8) and (9) give:

u(s) = Z Zp,(s s)Cjr ()il (11)
=1 j=1

and the tangential derivatives of u can be written as:

a n m a aC
u(s) = Z Z[ bi (s — sbH)C 1(8) + pi(s — ) 7JI(S) ]ﬁl

ask =1 j=1 as Sk ask

k=1,2. (12)

The derivatives of the monomials p; can be promptly
computed. These are:

ap’

S 61 = 5T = 55 =10,1,0,2(s5) = 51),0,(s2 = 55)],
S1
(13)
ap E . _ E\_ _ E _ E
a—(Sl 51,8, —83) =10,0,1,0,2(s, — 53), (57 — s7)].
Ry

(14)

After some simple algebra (Chati [60]), the derivatives of
the matrix C with respect to s, take the form:

aC 9B
29— A9 P - A Bes)
Sk Ay

TA” ()aB(S), k=12 (15)

ISk

with
OB OW(s,s'
©) _ prgt — g8y IWES). (16)
6sk ask

In deriving Eq. (15), the following identity has been used:

). (s) _A- ()aA(s) (s)
98k

k=1,2. an
ask
Tangential derivatives of the weight functions (described
in Section 2.3) are easily computed (Chati [60]). The final
form of the tangential derivatives of the potential (or dis-
placement) u, at an evaluation point E, takes the form:

( >—ZZ[ %5 0,0 ,<s5)]ﬁ1+22

=1 j=1

[p,(o 0){A (s) ( FYX - P(s’ —sF)

X Al(sE)B(sE))}]ﬁ, (18)

with k = 1, 2. In the above equation, I is the identity matrix.

One also needs the spatial gradient of the function u in
order to solve the HBIE (see Sections 5 and 6). For problems
in potential theory, this is easily obtained from its tangential
and normal derivatives du/ds; and du/dn, respectively. For
elasticity problems, however, one must also use Hooke’s
law at a point on the surface dB. Details of this procedure
are given in Appendix A.

Eq. (18) can be rewritten in compact form as:

a n
Y=Y vhhi; k=12, (19)
=1

— S
ask

where the approximating functions ¥, are:

m 8 )
v =Y [ (Tf,i o, 0>cﬂ<sE)]

J=1

-

[1’,(0 0){A (S) ( ")

x (I — P(s' — sE)Al(sE)B(sE))}]. (20)

2.3. Weight functions

The basic idea behind the choice of a weight function is
that its value should decrease with distance from a node and
that it should have compact support so that the region of
influence of a node is of finite extent (Fig. 2(b)). A possible
choice is the Gaussian weight function:

e*(a’/d/)2 ford = d,,
wi(d) = @n
0 ford > d,.



M.K. Chati et al. / Engineering Analysis with Boundary Elements 25 (2001) 639—-653 643

Here d = g(s, s ) is the minimum distance, measured on
the surface 9B, (i.e. the geodesic) between a point s and the
collocation node /. In the research performed to date, the
region of influence of a node has been truncated at the edge
of a panel (Fig. 2(a)) so that geodesics, and their derivatives
(for use in Eq. (21)), need only be computed on piecewise
smooth surfaces. Finally, the quantities d; determine the
extent of the region of influence (the compact support) of
node I. They can be made globally uniform, or can be
adjusted such that approximately the same number of
nodes get included in the region of influence of any given
node / or in the domain of dependence of a given evaluation
point E. Such ideas have been successfully implemented in
Refs. [58,59].

3. BIEs

The standard (singular) BIEs for potential theory and
linear elasticity are given below. It is hoped that the
sequence of presentations below will help towards a clear
understanding of boundary-based meshless methods.

3.1. Potential theory

The well known regularized BIE for 3-D problems in
potential theory is (see, for example, Banerjee [61]:

0= LB [G(P, Q) — F(P,D(u(Q) — u(P)]dSy, (22)

where, as mentioned before, u is the potential, 7= du/dn is
the flux, and the kernels for 3-D problems are:

IG(P,
F(P,Q) = &

O~ G oy g

(23)

Here, ris the Euclidean distance between the source point
P and field point Q, and n, is the unit normal to dB at a
(regular) field point Q.

3.2. Linear elasticity

For 3-D linear elasticity, the standard BIE, in regu-
larized form, and in the absence of body forces, can be
written as ([62])

0= LB [Ui(P, Q)1(Q) — Tin(P, Q) (Q) — w(P))] dSp,
(24)

where u; and 7; are the components of the displacement

and traction respectively, and the Kelvin kernels are:

1

v, = —
&= 16m(1 — v)Gr

(B — 4oy + rrgl, (25)

—1

ar
7, = ———— 1—2v)6,, + 3r; —
ik 87T(1 — V)r2 [{( V) ik r,tr,k} on

- =2v(rn — r,kni)il. (26)

In the above, n; are the components of the unit normal at
the field point Q, G is the shear modulus, v is the Poisson
ratio and &; denotes the Kronecker delta. A comma denotes
a derivative with respect to a field point, i.e.

_or x(0) —x(P)
T Q) r

27)

4. BNM

The MLS approximates derived in Section 2 are used to
approximate u and 7 on the boundary dB. In order to carry
out the integrations, the bounding surface is discretized into
cells. A variety of shape functions have been used in order to
interpolate the geometry. In particular, the bilinear (Q4) and
quadratic (T6) triangle cells have been employed. These
‘geometric’ shape functions can be found in any standard
text on the FEM (see [63,64]).

4.1. Potential theory

Substituting the expressions for # and 7 from Eq. (8) into
Eq. (22), and dividing 9B into N, cells, one gets the discre-
tized form of the BIE for potential problems as follows:

N. Ny
0=ZJ,F@@Z@@ﬂ#@@)
k=1 9By =1

No Np
x{ > Q)i — > cp,(P)a,}] ds,. (28)
I=1 I=1

where @,(P) and ®,(Q) are the contributions from the Ith
node to the collocation point P and field point Q,
respectively. Also, Ny nodes are situated in the domain of
dependence of the field point Q and Np nodes are situated
in the domain of dependence of the source point P.

4.2. Linear elasticity

The BNM equation for elasticity is obtained by substituting
the expressions for i, and 7, (Eq. (8) into Eq. (24), leading
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to:

N, No
0=23 LB [Uik(P, Q)Y DDy — TulP.Q)
m=1 m I=1

No Np
x{ > Dy — @(P)ak,}] dSy. (29)
I=1 =1

4.3. Discretization

In order to evaluate the non-singular integrals in Egs. (28)
and (29) over (possibly curved) triangular or rectangular
surface cells, 7 point and 3 X 3 Gauss quadrature are used,
respectively. However, as Q — P the kernels G and Uy
become weakly singular and the kernels F' and Ty become
strongly singular. As shown in Eqs. (28) and (29), the
strongly singular integrands are regularized by using rigid
body modes and the regularized versions are weakly
singular. Finally, special integration techniques are used to
evaluate the resulting weakly singular integrals in Eqs. (28)
and (29) ([58,65]).

The final discretized version of either Eq. (28) or Eq. (29)
has the form:

[Agpl{a} + [Ax]{F} = {0}. (30

With respect to elasticity theory, the count for the number
of equations and unknowns follows. For Ny nodes on the
bounding surface, there are a total of 12Ny quantities on the
boundary, i.e. 3Ny values for each of u; and its nodal approx-
imation #; and similarly for ;. For a well posed problem,
values of either u; or 7; are known at each node on the
boundary, so 3N nodal values are given. Therefore, 9Np
equations are needed to solve for the 9Nz remaining
unknowns. Eq. (30) consists of 3N equations and Eq. (10)
consist of 3Ny equations each. Thus, a well-posed boundary
value problem can be solved using Eq. (30), in combination
with Eq. (20). An analogous count of equations and
unknowns applies to Eq. (28) for potential theory.

5. HBIEs

Continuing the basic development of Section 3, the
HBIEs for potential theory and linear elasticity are
presented here.

5.1. Potential theory

The HBIE is obtained upon differentiation of the primary
BIE at an internal source point with respect to the coordi-
nates of that source point. Due to differentiation, the kernels
in the HBIE become strongly singular and hypersingular,
respectively, and appropriate regularization procedures
need to be employed in order to use the HBIEs for carrying
out meaningful computations. The fully regularized HBIE
for the Laplace’s equation, at a regular point on 9B (where it

is locally smooth) can be written as (see Krishnasamy et al.
(29D,

[ 9GP0
0= ZEL 1) P ds,
JIG(P,
— Uy (P )j (m([f) n(Q) — mi(P)) S,
[ 0F(P.0) B
LB () — u(P) — 0 (P)(Q)
— x(P))]dS,. G1)

Carrying out the inner product of Eq. (31) with the source
point normal n(P), one obtains:

o- [ 2000

on(P) ————[7(Q) — 1(P)] dSp

—up) | TS Q) — () 45,

) B
J o (@) = u(P) ~ y PY5(Q)

The gradient of the potential function is required in the
HBIEs Egs. (31) and (32). For potential problems, the
gradient (at a regular boundary point) can be written as,

P P
Vu= "¢+ X, + rn, (33)
aSl 6

where 7= du/dn is the flux, n is the unit normal, t;, t,
are the appropriately chosen unit vectors in two tangential
directions on the surface of the body, and du/ds;, i = 1,2
are the tangential derivatives of u (along t; and t,) on the
surface of the body.

5.2. Linear elasticity

Similarly, the fully regularized HBIE for linear elasticity
can be written as (see Cruse and Richardson [54]),

0= JaB Dy (P, Q)(1(Q) — 7(P)) dSp
— Oyn(P) LB Dy (P, Q)(n,(Q) — n,,(P)) dSg

- JBB Sijk(P, Dlu(Q) — up(P) — s (P)(y,(Q)

— ym(P)1dSp, (34)

where the (strongly singular) kernel D and (hypersingular)



M.K. Chati et al. / Engineering Analysis with Boundary Elements 25 (2001) 639—-653 645

kernel Sy are:

1
Dijk = m[(l - ZV)(SkirJ‘ + 5kjr,,- - 5ijr’k)
+3rrrid, (35)
G ar
Sijk = —477.(1 — V)r3 [35[( 21/)8 I"k + V(S,kr + 'kr,i)

G
— Sr,irzjr’k]:l + m[SV(ﬂirJr,k + njr,ir’k)
+ (1 = 20)@mrr; + n;dy + n;0y) — (1 — 4v)m ;.
(36)

Again, taking the inner product of Eq. (34) with the
source normal, one gets the equation:

0= LB Dy (P, Q)n(P)(7(Q) — T(P)) dSg
— Ou(P) JBB Dy (P, Q)n;(P)(n,,(Q) — n,,(P)) dSy

- LB Sij (P, Qnj(P)u(Q) — u(P) — ttye,(P)(y,n(Q)

— ym(P))1dSp. (37

The procedure for obtaining the displacement gradients
Uy, that are required in Egs. (34) and (37), is described in
Appendix A. The stress components o; can be easily
obtained from the displacement gradients using Hooke’s
law.

6. Hypersingular boundary node method (HBNM)

Analogous to the development of the BNM in Section 4,
derivation of the HBNM for potential theory and linear
elasticity are presented in this Section. The goal here is to
present a comprehensive treatment of the method.

6.1. Potential theory

Using the interpolation functions 7 (second part of the Eq.
(8)) and for the tangential derivatives of u (Eq. (19)), one
can obtain the discretized forms of the potential gradient
(see Eq. (33)) and the HBIEs Eqs. (31) and (32) as follows:

I=1

X aGr o & N A
0= ; Jasi ox,,(P) 1:21 D (O)F — ; d,(P)?,

6.0
— Uy (P >j SIS (@) ~ m(P) S,
[ aFP,0[ & & o
LB W[; D(Q)iyy ; D, (P)ii; — uy(P)

X (x(Q) — xk(P))] dSo. (39)

No Np
J WGPON S 401, - S B(PY
on(P) = =

IGP, Q) Q)
_ uk(P)J “onP) (m(Q) — i (P))dS
dF(P, Q) Np A
N JdB, on(P) [ Z ¢I(Q)ul ; ‘D[(P)u, - u’k(P)

X (x(Q) — xk(P))] dSo, (40)

respectively, where @,(P) and @,(Q) are the contributions
from the /th node to the collocation point P and field point
0, respectively, with Np and Ny nodes in their respective
domains of dependence. Of course, the gradient of u from
Eq. (38), in global coordinates, is used in Egs. (39) and (40).

6.2. Linear elasticity

As mentioned before, the procedure for obtaining u, in
the elasticity Egs. (34) and (37), from the tangential deriva-
tives and tractions, is described in Appendix A. Once this is
done, discretized versions of Eqs. (34) and (37) are readily
obtained as:

Ne No Np
0=> J Dy (P, Q)[ PR I(ULTEDY r:D,(P)%K,]
=1 J 9B 1= =1
X dSp = opn(P) LB Dyjx(P, Q)(n,,(Q) — n,,(P)) dSg
Ng Np
-] suc. Q)[ S 0y — S BPyiy
B =1 =

= e (PY(Q) — ym(P))] dSo (41)
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and

No

N, Np
0=> LB Dy (P, Q)n,-(P)[ PO @,(P)f-,d]
=1 ! I=1 =1
XdSp = pu(P) LB Dy (P, Q)ni(P)(n,,(Q)

(P dSp LB S(P, Q) (P)
N Np

X[ Z D(Q)ityy — Z D,(Piy
I=1 =1

= we(P)yn(Q) — ym(P))] dSp. (42)

6.3. Discretization

Egs. (39) and (40) are the HBNM equations for potential
theory, and Egs. (41) and (42) are the HBNM equations for
linear elasticity. In this work, Eq. (40) is used to solve
boundary value problems (BVPs) in potential theory and
Eq. (42) is used to solve BVPs in linear elasticity.

The procedure followed for discretization of Eqgs. (40)
and (42) is quite analogous to the BNM case described
before in Section 4.3. These equations are fully regularized
and contain either non-singular or weakly integrands. Non-
singular integrals are evaluated using the usual Gauss
quadrature over surface cells, while the weakly singular
integrals are evaluated using the procedure outlined in
Ref. [58,65]. The discretized version of either Egs. (40) or
(42) has the generic form shown in Eq. (30). Numerical
results from the BNM, for 3-D potential theory and linear
elasticity, are available in Refs. [58,59], respectively, while
corresponding numerical results from the HBNM are
presented in this paper.

7. Numerical results

The HBNM is used herein to solve BVPs in potential
theory (Laplace’s equation) and linear elasticity. The
numerical examples presented provide considerable insight
into the working of the method and choice of various para-
meters. Several aspects of the HBNM are investigated such
as positioning of collocation nodes, determination of geo-
desics, range of influence of nodes (d;), solution at internal
points, accuracy, and convergence properties. Correspond-
ing numerical results from the standard BNM have been
given by Chati et al. [59] and Chati and Mukherjee [58].
The numerical results presented for the solution of BVPs
using the HBNM not only validate the method itself, but
also indicate its advantage for solving other problems for
which HBIEs are of special importance (e.g. error analysis

and adaptivity — please find a detailed discussion of this
issue in Ref. [51]).

7.1. Potential theory — Dirichlet problems on a sphere

The Laplace’s equation in 3-D can be written as:
_ o%u O’u 9’u

NEML L
oxr a3 g

=0. (43)

The HBNM is used to solve Dirichlet problems on a
sphere. The exact solutions presented below have been
used to evaluate the performance of the various parameters
of the HBNM. Dirichlet problems are posed with these solu-
tions imposed (in turn) on the surface of a solid sphere, and
the normal derivatives of the potential are computed on the
sphere surface. Potential gradients at internal points are also
computed in some cases. The complete sphere is modeled in
all cases.

e Linear solution

u=ux; +x,+x;. 44)

e (Quadratic solution

U= x1x, + x5x3 + x3%. (45)

e Cubic solution

u= x? + x% + xg - 3x%x2 — Sx%x3 - 3x§x1. (46)

e Trigonometric solution

U= "—cos’p— — — = 47

where R is the radius of the sphere, ¢ is the angle
measured from the x; axis and > = x% + x% + x%.

Positioning of collocation nodes. The location of the
collocation node in each cell is an important ingredient
for the successful implementation of the method. Table 1
presents the global L, error in du/dn (on the surface of the
sphere) for the linear, quadratic and cubic solutions
(imposed as Dirichlet boundary conditions on the sphere
surface) for various positions of the single collocation
node in the parent space (s, f). The global (L,) error in a
function is computed according to the equation;

J (d)(exact) _ ¢(numerical))2dA
A
JA (¢(exacl)2dA

e(Pp) = 100% (48)

where ¢ is the variable of interest and A is either the area of
a panel or of the whole surface dB.

The mapping of a triangular surface cell to the parent
space (s,f) is shown in Fig. 3. The results have been obtained
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Fig. 3. Mapping of quadratic triangular cell (T6) to the parent space (s,).

using a configuration consisting of 72 T6 triangles with one
node per cell. It can be clearly seen from Table 1 that, as
expected, placement of the collocation node at the centroid
of the triangle in the parent space, i.e s =t = 1/3, yields
excellent results. Overall, placing the single node at the
centroid of the triangle/rectangle yields the best numerical
results.

Geodesics. In order to construct the interpolating func-
tions using MLS approximants, it is necessary to compute
the geodesic on the bounding surface of a body. Computa-
tion of geodesics can get quite cumbersome on a general
curved surface described by splines. For the sphere, the
exact geodesic between two points P (collocation node)
and Q (field point) is the length of the arc between these
points on the great circle containing them. However, a very
simple approximation to the geodesic would be to use the
‘Buclidean’ distance between points P and Q. Table 2
summarizes the procedure for computing the exact and
approximate geodesic on a sphere, while Table 3 presents
a comparison in the L, errors for linear, quadratic, cubic and
trigonometric solutions imposed on the sphere. For this
specific example, with idealized geometry and boundary
conditions, it can be seen that the errors remain reasonably
small even if the approximate geodesic is used to replace the
exact one. Thus, it is expected that the computation of
geodesics on complicated shapes will not be a hindrance
towards using the present methodology.

Range of influence of nodes. Another important feature of
the MLS approximants is the range of influence associated
with each node. The parameter which controls the so called

Table 1
€(du/on): L, error in du/on (Eq. (48)) for Dirichlet problems on a sphere for
various positions of the single collocation node in the parent space

s=t Linear(%) Quadratic (%) Cubic (%)
0.1 4.369 8.735 30.264
0.15 3.692 5.982 23.405
0.2 0.519 2.404 11414
0.25 0.336 1.271 5.628
0.3 0.185 0.730 3.625
173 0.0717 0.313 1.665
0.35 0.153 0.593 2.2187
04 0.454 1.111 2.566

Table 2
Exact versus approximate geodesics on the surface of a sphere

Collocation point

Field point

Curvilinear coordinates
between P and Q
Exact geodesic

¥ Angle between P and Q
V¥ = arcos (F,,-r'Q/Rz)
d=RY

P (xip, Xap, X3p) = (R, Op, bp)
Q (x10, X290, X30) = (R, 09, )
§1 = R(¢dg — ¢p); 3, =R(6p — 6p)

Approximate geodesic

d=G}+5)

‘compact support’ associated with each node is d;. In this
work the parameter d; is chosen to be non-homogeneous in
the sense that each evaluation point has an identical number
of nodes in its domain of dependence. Now, for a given
polynomial basis (e.g. Linear/Quadratic/Cubic), the number
of nodes #n in the domain of dependence of each evaluation
point becomes the parameter of interest.

The parameters d; are chosen as follows. For a given
n, let S be the set of nodes in the domain of dependence
of a particular evaluation point E. The values of d; for
all nodes in § are set equal to d,., Where d, is the dis-
tance from E, along the geodesic, of the node in S, which is
farthest from E.

Fig. 4(a) and (b) show the effect of varying the number of
nodes n for a linear basis (m = 3) and a quadratic basis
(m = 6), respectively, for the cubic and trigonometric
solutions. It is observed that the lowest value of L, errors
is obtained for n € (2m,3m). This fact has also been
observed for the BNM ([58]).

Potential and gradient at internal points. Fig. 5(a) and (b)
show variation in the potential and its x; derivative, respec-
tively, for points along the x; axis inside the sphere. The
Dirichlet boundary value problem is solved upon imposing
the trigonometric solution on a cell configuration consisting
of 72 T6 cells with one node per cell and a quadratic basis
(m = 6). It is seen from these figures that the HBNM solu-
tions match the exact solutions within plotting accuracy for
both u and du/dx;.

An important point needs to be made here. Some kernels
in a BIE or HBIE become nearly singular when collocated at
an internal point that is close to the boundary of a body. This
can lead to large errors in a BNM or HBNM numerical
solution at such points. This matter has been dealt with by
several researchers. The reader is referred to a recent paper
by Mukherjee et al. [66] for a detailed discussion of nearly

Table 3
€(du/dn): L, error in du/dn for Dirichlet problems on a sphere for the exact
and an approximate computation of geodesics

Exact solution Exact geodesic (%) Approximate geodesic (%)

Linear 0.717 0.109
Quadratic 0.313 0.715
Cubic 1.665 4.059

Trigonometric 0.172 0.279




648 M.K. Chati et al. / Engineering Analysis with Boundary Elements 25 (2001) 639-653

25 . : ‘ ; 5
* x Cubic function m=3
o o Trignometric function x
20F | | R
I |
! o -
c * l
S st | | * 1
> | *
g~ | |
£ I | o
5 | | *
S |
5 10- * | } ,
-~ o | |
(0]
1 3 * : ° °
5r : o : ]
I |
| |
1 1
O.__ 1 L | L L
4 6 8 10 12 14
Number of nodes (n)
(a)
6 T ;
* = Cubicfunction m=6 |
5 o o Trignometric function |
L ‘ J
1 * L
| !
| * * |
4+ | * ! N
| 1
| 1
c I * I
(g~ I i
; Sﬁ 1 i 7
g~) * 1 i
£ * : %
£ 2 | |
* |
_IN ! |
| |
1r } o o ! ]
| (o] I
| [0]
[e] o o o]
N $ l . :
10 12 14 16 18

Number of nodes (n)

(b)

Fig. 4. €(du/dn): L, error in du/dn for varying number of points in the
domain of dependence of an evaluation point E; (a) linear polynomial
basis (m = 3); (b) quadratic polynomial basis (m = 6) (72 T6 cells with
one node per cell).

singular integrals in the context of the BNM and the HBNM.
The approach presented in Ref. [66] has been employed
in the present paper in order to obtain accurate values of u
and du/0x; (at internal points close to the surface of a body)
in Fig. 5, as well as for obtaining the elasticity results
presented in Section 7.2.

Convergence study. The results obtained by the HBNM
have also been compared with those from the conventional
BEM for a Dirichlet problem on a sphere with the trigo-
nometric solution (Eq. (47)). Fig. 6 presents a comparison in
the L, error in du/dn for the HBNM and BEM, as functions
of the (global) number of nodes. The L, error e(¢) is defined
here as:

e(¢) = log{[le™ — ¢ oI}, (49)

where ||¢]| = S, (¢,)*. Here, ¢; are the nodal values of the

3 T T r

*  x  HBNM solution
4 | Exact solution

10 . L s

1r * » HBNM solution | 1
Exact solution

Fig. 5. Variation of (a) potential and (b) du/dx; along the x; axis for a
sphere with the trigonometric solution.

function ¢ and the superscripts n and e refer to its numerical
and exact values, respectively. Also, as mentioned above,
N is the total number of nodes on 9B.

Fig. 6 shows that the two methods yield comparable
results and have similar rates of convergence. The HBNM
solution, however, is more accurate than the BEM solution
for this example.

7.2. Linear elasticity

Two benchmark elasticity test problems are solved by the
HBNM. These examples are the 3-D versions of the Lamé
and Kirsch problems.

7.2.1. 3-D Lamé problem
The 3-D Lamé problem consists of a hollow sphere, with
inner and outer radius a and b, respectively, under internal
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Fig. 6. Comparison of e(7r) (L, error in du/dn) for the HBNM and the
conventional BEM for a Dirichlet problem on a sphere. N is the total
number of nodes (one node per cell is used in the HBNM).

pressure. Fig. 7 shows a schematic of the problem under
consideration. The numerical solution for this problem has
been obtained using the material parameters £ = 1.0, v =
0.25, and geometric parameters a = 1.0, b =4.0 with
internal pressure p; = 1. The numerical solution has been
obtained by prescribing tractions all over the boundary and
then modifying the resulting singular matrix using the ideas
presented in the paper by Lutz et al. [67] and Chati et al.
[59].

The entire surface of the hollow sphere has been modeled
here, i.e. symmetry conditions have not been used. The
exact solution for the radial displacement, radial and
tangential stresses, as functions of the distance r from the
center of the sphere, is given as ([68]):

3

"TER - &)

3 3
u W[(1—2V)+(1+u)2b], (50)

Fig. 7. Lamé problem for a hollow sphere under internal pressure.

3013 3
pia’(b” —r’)
= 7, 51
3.3 3
a(2r’ + b
Op = P { ) (52)

2130 —add)

The cell/nodal structure used to obtain the numerical
results consists of 72 quadratic T6 cells on each surface of
the hollow sphere with 1 node per cell.

Fig. 8(a) shows the radial displacement along the x;-axis
compared with the analytical solution. The radial and
tangential stresses are compared to the exact solution in
Fig. 8(b). It can be clearly seen that the numerical results
are in excellent agreement with the analytical solution. The
algorithm presented in Mukherjee et al. [66] is crucial for
obtaining accurate solutions for the displacement and
stresses at internal points close to the boundary. Also, a

0.6r _
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=
= 05f |
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g 02r
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Fig. 8. Internal (a) radial displacement and (b) radial and tangential
stresses, along the x; axis for the Lamé problem.
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Table 4
Convergence study for € u,) the L, error in radial displacement (u,), on the
inner and outer surfaces of the sphere, for the 3-D Lamé problem

L, error 144 cells (%) 256 cells (%) 576 cells (%)
Outer surface 0.404 0.241 0.0496
Inner surface 0.460 0.214 0.0658

convergence study is carried out to demonstrate the robust-
ness of the proposed numerical method. Table 4 shows the
L, error in the radial displacement (x,) on the inner and outer
surfaces of the sphere. One node per cell is used in all the
calculations. As the number of cell increases, the L, error
decreases on both the outer and inner surfaces of the sphere
for the 3-D Lamé problem.

7.2.2. 3-D Kirsch problem

The 3-D Kirsch problem consists of examining the stress
distribution in the vicinity of a small spherical cavity in a
cube subjected to far field uniform tension, as illustrated in
Fig. 9. The material parameters are chosen to be: E = 1.0,
v = 0.25. The geometric parameters are chosen as: a = 1.0,
b = 10.0. Again, the loading is applied without restraining
any rigid body modes and the scheme by Chati et al. [59] is
used to obtain meaningful numerical results.

The exact solution for the normal stress (o33), for points
in the plane x3 = 0, is given as (Timoshenko and Goodier
[68]):

4—-5v (a\’ 9 a\’
"33:‘7"[1 * 2(7—5u)(7) +2(7—5v)(7) ] (53)

Here r is the distance of a generic point from the center of
the spherical cavity.

2b

S0

Fig. 9. 3-D Kirsch problem: a cube with a spherical cavity loaded in far-
field uniaxial tension

22 T T T T
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Fig. 10. 033 along the x; axis ahead of the cavity for the Kirsch problem.

Fig. 10 shows a comparison between the HBNM solution
and the exact solution for the normal stress (o733) along the
x; axis. It can be clearly seen that the HBNM solution is in
excellent agreement with the analytical solution. The cell
structure consists of 96 Q4 cells modeling the cube and 72
T6 cells modeling the spherical cavity, again with one node
per cell. It is again pointed out that the new algorithm
mentioned in Ref. [66] is essential for obtaining accurate
values of stresses near the surface of the cavity.

8. Concluding remarks

A new meshfree method called the HBNM, that combines
HBIEs with MLS approximants, has been presented in this
paper. The efficacy of the HBNM is demonstrated by
comparing numerical results, for several 3-D numerical
examples in potential theory and in linear elasticity, with
analytical solutions for these problems. The HBNM,
presented here, is expected to be very useful for obtaining
meshfree formulations of diverse important problems such
as 3-D fracture mechanics, error analysis and adaptivity and
Symmetric Galerkin Boundary Element Methods. Work on
error analysis and adaptivity is already in progress [51],
while work on the other topics, mentioned above, is planned
for the near future.
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Appendix A. Displacement gradient on the surface

The displacement gradient at a boundary source point P is
needed in order to solve a boundary value problem in linear
elasticity using the HBNM (see Eqgs. (41) and (42)). Lutz et
al. [39] have proposed a scheme for doing this, however,
details of the procedure have not been provided in Ref. [39].
These details are given below.

The (right-handed) global Cartesian coordinates, as
before, are (xy, x, x3). Consider (right-handed) local Carte-
sian coordinates (x'j,x5,x%) at a regular point P on B as
shown in Fig. 11. The local coordinate system is oriented
such that the x| and x coordinates lie along the tangential
unit vectors t; and t, while x} is measured along the outward
normal unit vector n to dB as defined in Eq. (33).

Therefore, one has:

x' = Qx, (A1)

u’ = Qu, (A2)

where uj, k=1,2,3 are the components of the displace-
ment vector u in the local coordinate frame, and the
orthogonal transformation matrix Q has the components:

fy Ip I3
Q= 1t tn 3 (A3)
ng ny nj

with #; the jth component of the ith tangent vector and
(ny,n,n3) the components of the normal vector.

The tangential derivatives of the displacement, in local
coordinates, are uéqk/, i=1,2,3; k= 1,2. These quantities

Xs

Fig. 11. Local coordinate system on the surface of a body.

are obtained as follows:

P
Uppr = s Qij@ = Qz’jlzzl L aeTh (A4)
where the last equality is obtained from Eq. (19).
The remaining components of Vu in local coordinates are
obtained from Hooke’s law (see [39]) as:

Bull 7'1 aug
axt G x|
81/2 7'2 au'3
axt G oxh

BL{; (- 2n7 v [8_1/1 + 6_u'2:|’ (AS)

axhy  2G(1 — ) 1w x| oxh

where ), k= 1,2,3, are the components of the traction
vector in local coordinates.

The components of the displacement gradient tensor, in
the local coordinate system, are now known. They can be
written as:

l/t/l 1 M/IZ’ M/13/

— ! / ! !
(V)jca = A" = | upyy upy Upy (A6)

/ !/ !/
Uzyr Uzpr Uzz

Finally, the components of Vu in the global coordinate
frame are obtained from those in the local coordinate frame
by using the tensor transformation rule:

U Up U3

(VWgoba =A=Q'A'Q=| ury 5 ur; |. (A7)

Uzy Uzp U33

The gradient of the displacement field in global coordinates
is now ready for use in Eq. (42).
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