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Correspondence Principle in
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This paper presents an extension of the correspondence prin
(as applied to homogeneous viscoelastic solids) to nonhom
neous viscoelastic solids under the assumption that the relaxa
(or creep) moduli be separable functions in space and time. A
models for graded viscoelastic materials are presented and
cussed. The revisited correspondence principle extends to spe
instances of thermoviscoelasticity and fracture of functiona
graded materials. @DOI: 10.1115/1.1331286#

1 Introduction
Functionally graded materials~FGMs! are special composite

usually made from both ceramics and metals. The ceramic in
FGM offers thermal barrier effects and protects the metal fr
corrosion and oxidation. The FGM is toughened and strengthe
by the metallic composition.The composition and the volum
fraction of the constituents vary gradually, giving a nonunifor
microstructure with continuously graded macroproperties. Vari-
ous thermomechanical problems of FGMs have been studied
example, constitutive modeling~@1#!, fracture behavior~@2–4#!,
thermal stresses~@5,6#!, strain gradient effects~@7#!, plate bending
problems~@8#!, higher order theory~@9#!, and so on. Comprehen
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sive reviews of ongoing FGM research may be found in the art
by Hirai @10# and the book by Suresh and Mortensen@11#.

One of the primary application areas of FGMs is hig
temperature technology. Materials will exhibit creep and str
relaxation behavior at high temperatures. Viscoelasticity offer
basis for the study of phenomenological behavior of creep
stress relaxation. The elastic-viscoelastic correspondence prin
~or elastic-viscoelastic analogy! is probably one of the most usefu
tools in viscoelasticity because the Laplace transform of the
coelastic solution can be directly obtained from the correspond
elastic solution. In the present work, the correspondence princ
is revisited in the context of viscoelastic FGMs.

In this paper, the basic equations of viscoelasticity in FGMs
formulated. The correspondence principle is established fo
class of FGMs where the relaxation moduli for shear and dila
tion m(x,t) and K(x,t) take the formsm(x,t)5m0m̃(x) f (t) and
K(x,t)5K0K̃(x)g(t), respectively, wherem0 andK0 are material
constants,m̃(x), K̃(x), f (t), andg(t) are nondimensional func
tions, andx5(x1 ,x2 ,x3). The correspondence principle stat
that the Laplace transforms of the nonhomogeneous viscoel
variables can be obtained from the nonhomogeneous elastic
ables by replacingm0 and K0 with m0p f̄(p) and K0pḡ(p), re-
spectively, wheref̄ (p) and ḡ(p) are the Laplace transforms o
f (t) and g(t), respectively, andp is the transform variable. The
final nonhomogeneous viscoelastic solution is realized by inv
ing the transformed solution. The above correspondence princ
can also be extended to specific instances of thermoviscoelas
and fracture of FGMs.

2 Basic Equations
The basic equations of quasi-static viscoelasticity of FGMs

the equilibrium equation

s i j , j50, (1)

the strain-displacement relationship

e i j 5
1

2
~ui , j1uj ,i !, (2)

and the viscoelastic constitutive law

si j 52E
0

t

m~x,t2t!
dei j

dt
dt, skk53E

0

t

K~x,t2t!
dekk

dt
dt,

(3)

in which s i j are stresses,e i j are strains,si j andei j are deviatoric
components of stress and strain tensors given by

n.
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si j 5s i j 2
1

3
skkd i j , ei j 5e i j 2

1

3
ekkd i j , (4)

whereui are displacements,d i j is the Kronecker delta,m(x,t) and
K(x,t) are appropriate relaxation functions,t is time, and the
Latin indices have the range 1, 2, 3 with repeated indices imply
the summation convention. Note that the relaxation functions a
depend on spatial positions, whereas in homogeneous visco
ticity, they are only functions of time, i.e.,m[m(t) and K
[K(t) ~@12#!.

For a boundary value problem, the boundary conditions
given by

s i j nj5Si , on Bs , (5)

ui5D i , on Bu , (6)

wherenj are the components of the unit outward normal to
boundary of the body,Si are the tractions prescribed onBs , and
D i are the prescribed displacements onBu . The parts of the
boundaryBs andBu are required to remain constant with time

3 Correspondence Principle
In general, the correspondence principle of homogeneous

coelasticity may not hold for FGMs. To circumvent this proble
we consider a class of FGMs in which the relaxation functio
have the following general form:

m~x,t !5m0m̃~x! f ~ t !,
(7)

K~x,t !5K0K̃~x!g~ t !,

wherem0 and K0 are material constants, andm̃(x), K̃(x), f (t),
andg(t) are nondimensional functions. The constitutive law~3! is
then reduced to

si j 52m0m̃~x! E
0

t

f ~ t2t!
dei j

dt
dt,

(8)

skk53K0K̃~x!E
0

t

g~ t2t!
dekk

dt
dt.

By assuming the material initially at rest, the Laplace transfor
of the basic Eqs.~1!, ~2!, ~8!, and the boundary conditions~5! and
~6! are obtained as

s̄ i j , j50, (9)

ē i j 5
1

2
~ ūi , j1ū j ,i !, (10)

s̄i j 52m0m̃~x!p f̄~p!ēi j , (11)

s̄kk53K0K̃~x!pḡ~p!ēkk , (12)

s̄ i j nj5S̄i , on Bs , (13)

ūi5D̄i , on Bu , (14)

where a bar over a variable represents its Laplace transform,
p is the transform variable. Thus

s̄ i j 5E
0

`

s i j exp~2pt!dt, ē i j 5E
0

`

e i j exp~2pt!dt,

ūi5E
0

`

ui exp~2pt!dt, f̄ ~p!5E
0

`

f ~ t !exp~2pt!dt, (15)

ḡ~p!5E
0

`

g~ t !exp~2pt!dt.

It is seen that the set of Eqs.~9!–~12!, and conditions~13! and
~14! have a form identical to those of nonhomogeneous elasti
130 Õ Vol. 68, JANUARY 2001
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with the shear modulusm5m0m̃(x) and the bulk modulusK

5K0K̃(x) provided that the transformed viscoelastic variables

associated with the corresponding elastic variables andm0p f̄(p)
andK0pḡ(p) are associated withm0 andK0 , respectively. There-
fore, thecorrespondence principlein homogeneous viscoelasticit
still holds for the FGM with the material properties given in E
~7!, i.e., the Laplace transformed nonhomogeneous viscoela
solution can be obtained directly from the solution of the cor
sponding nonhomogeneous elastic problem by replacingm0 and

K0 with m0p f̄(p) and K0pḡ(p), respectively. The final solution is
realized upon inverting the transformed solution.

4 Some Models for Graded Viscoelastic Materials
Among the various models for graded viscoelastic materials

the standard linear soliddefined by

m~x,t !5m`~x!1@me~x!2m`~x!#expF2
t

tm~x!G ,
(16)

K~x,t !5K`~x!1@Ke~x!2K`~x!#expF2
t

tK~x!G ,
the power-law model

m~x,t !5me~x!F tm~x!

t Gq

, K~x,t !5Ke~x!F tK~x!

t Gq

, 0,q,1,

(17)

and theMaxwell material

m~x,t !5me~x!expF2
t

tm~x!G , K~x,t !5Ke~x!expF2
t

tK~x!G ,
(18)

wheretm(x) and tK(x) are the relaxation times in shear and bu
moduli, respectively, andq is a material constant. The discussio
below indicates the revisions needed in the general models so
the correspondence principle holds.

• Standard Linear Solid~16!. If the relaxation timestm and tK
are constant, ifme(x) andm`(x) have the same functional form
and if Ke(x) andK`(x) have the same functional form, then th
standard linear solid satisfies assumption~7!.

• Power Law Model~17!. It is seen that if the relaxation time
tm andtK are independent of spatial position, then the assump
~7! is readily satisfied. Moreover, even if the relaxation tim
depend on the spatial position in~17!, the correspondence prin
ciple may still be applied with some revision, which consists
taking the corresponding nonhomogeneous elastic material
the following properties:

m5me~x!@ tm~x!#q, K5Ke~x!@ tK~x!#q, (19)

instead ofm5me(x) andK5Ke(x).
• Maxwell Material ~18!. If the relaxation timestm and tK are

independent of spatial position, the assumption~7! is promptly
satisfied.

5 Thermoviscoelastic Problem
The basic equations of thermoviscoelasticity of FGMs are id

tical to those of viscoelasticity except the constitutive law. T
constitutive relation for thermoviscoelastic FGMs is given by

si j 52E
0

t

m~x,t2t!
dei j

dt
dt,

(20)

skk53E
0

t

K~x,t2t!
d@ekk2a~x!T#

dt
dt,

whereT is the temperature anda~x! is the coefficient of thermal
expansion. Herea is assumed to be time-independent. By app
Transactions of the ASME
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ing the Laplace transform to the above equation and adopting
form of the relaxation functions given in~7!, we obtain

s̄i j 52m0m̃~x!p f̄~p!ēi j , s̄kk53K0K̃~x!pḡ~p!~ ēkk2aT̄!,
(21)

while the constitutive relation of the nonhomogeneous th
moelasticity may be expressed as

sij52m0m̃~x!ei j , skk53K0K̃~x!~ekk2aT!. (22)

Thus it can be seen that the correspondence principle still ho

6 A Path-Independent Integral
The J-integral ~@13#! has been extended to certain classes

elastic materials with varying Young’s modulus in the crack-li
direction by Honein and Herrmann@14#. Here, a J-like path-
independent integral is presented for characterizing fracture
nonhomogeneous viscous materials.

Consider the shear modulus with the specific functional for

m~x1 ,x2 ,t !5m0~x2!exp~bx1! f ~ t ! (23)

wherem0(x2) is an arbitrary function ofx2 andb is an arbitrary
material constant. Note that~23! has the form given in~7!. More-
over, the Poisson’s ratio is assumed to be independent ofx1 . The
proposed integral to characterize crack growth in such graded
terial undergoing creep is

Ce* 5E
G
F S Ẇn12s i j nj

]u̇i

]x1
D2

b

2
s i j nj u̇i Gds (24)

whereG is a contour enclosing the crack tip,n1 is the first com-
ponent of the unit outward normal toG, s i j nj5Si are the compo-
nents of tractions alongG, ds is an infinitesimal length elemen
along the contourG, andẆ is the stress work rate~power! density
defined as

Ẇ5E
0

ė kl
s i j dė i j . (25)

The integral~24! has been obtained by replacing strain with stra
rates, and displacement with displacement rates in the corresp
ing Je-integral ~@14#! for nonhomogeneous elastic materials.
o

n
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The integral of the term within parentheses in~24! is the so-
called C* integral ~e.g., @15#! which is valid for homogeneous
viscous materials undergoing steady-state creep. The extra te
~24!, which appears outside the parentheses, is due to the mod
variation. Equation~24! can be seen as an extension of theC*
integral for nonhomogeneous viscous media. TheC* integral is a
special case of theJv-integral derived by Schapery@16# by means
of correspondence principle arguments. The latter integral
counts for a wide range of time-dependent material behavior,
includes viscous creep as special case.

7 A Simple Example
As an example of application, we consider an infinite strip

width h occupying the region 0<x1<h, 2`,x2,`, 2`,x3
,`. It is assumed that the strip deforms in thex1–x2 plane under
the plane-strain conditions. A ‘‘fixed grip’’ loading condition i
considered, i.e.,e22(x1 ,6`)5e0 , where e0 is a constant. The
nonvanishing stresss22 in a nonhomogeneous elastic mater
with the Young’s modulusE5Ee(x1) and the Poisson’s ration
5ne(x1) is given by~@4#!

s225
Ee~x1!e0

12ne
2~x1!

5
4e0me~x1!@3Ke~x1!1me~x1!#

3Ke~x1!14me~x1!
, (26)

where the following relations are used:

Ee5
9Keme

3Ke1me
, ne5

3Ke22me

2~3Ke1me!
. (27)

According to the correspondence principle, the Laplace transf
of the stress in a viscoelastic FGM with the shearing and dila
tional relaxation functionsm5me(x1) f (t) andK5Ke(x1)g(t) is
given by

s̄225
4e0me~x1! f̄ ~p!@3Ke~x1!ḡ~p!1me~x1! f̄ ~p!#

3Ke~x1!ḡ~p!14me~x1! f̄ ~p!
. (28)

For the Maxwell material~18! with constant relaxation timestm
and tK , the above transformed stress becomes
s̄225
@4e0me~x1!/~p11/tm!#@3Ke~x1!/~p11/tK!1me~x1!/~p11/tm!#

3Ke~x1!/~p11/tK!14me~x1!/~p11/tm!
. (29)
us
lu-

prin-

ts.
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at-

s,’’
By inverting ~29!, we get the stress in the time domain as follow

s225H 9Ke~x1!

4me~x1!13Ke~x1!
expF2

4me~x1!tm /tK13Ke~x1!

4m2~x1!13Ke~x1!

t

tm
G

1expS 2
t

tm
D J me~x1!e0 . (30)

By letting t→01, the nonhomogeneous elastic solution~26! is
recovered.

8 Conclusions
The correspondence principle is revisited and established f

class of FGMs where the relaxation functions for shear and d
tation take separable forms in space and time, i.e.,G1(x,t)/2
5m(x,t)5m0m̃(x) f (t) andG2(x,t)/35K(x,t)5K0K̃(x)g(t), re-
spectively. The correspondence principle states that the Lap
transforms of the nonhomogeneous viscoelastic variables ca
obtained from the nonhomogeneous elastic variables by repla
m0 andK0 with m0p f̄(p) andK0pḡ(p), respectively, wheref̄ (p)
s:

r a
ila-

lace
be

cing

and ḡ(p) are the Laplace transforms off (t) and g(t), respec-
tively, andp is the transform variable. The final nonhomogeneo
viscoelastic solution is realized by inverting the transformed so
tion. Equivalently, if the creep functionsJ1(x,t) andJ2(x,t) have
separable forms in space and time, then the correspondence
ciple ~as employed here! is also directly applicable.
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On Some Anomalies in Lame´’s
Solutions for Elastic Solids With Holes

G. B. Sinclair
Department of Mechanical Engineering, Louisiana State
University, Baton Rouge, LA 70803-6413

G. Meda
Science and Technology Division, Corning, Inc., Cornin
NY 14831-0001

Elastic solids with holes under remote tension are reconside
When hole dimensions are shrunk so that holes disappear, ano
lies occur in the classical elasticity solutions of Lame´. By intro-
ducing cohesive laws on hole surfaces as they shrink, th
anomalies may be removed.@DOI: 10.1115/1.1331285#

1 The Issue
Sketched in Fig. 1 is the Lame´ problem of an infinite elastic

plate, weakened by a circular hole of radiusa, under a uniform
remote tensions0 . In cylindrical polar coordinates~Fig. 1!, the
stresses in its classical solution are given in Lame´ @1# and are

H s r

su
J 5s0S 1H 2

1J a2

r 2 D , (1)

for a<r ,`, 0<u,2p. The companion shear stress compon
is zero by virtue of the axisymmetry of the configuration. Th

1Swain @5#, pp. 121,122, does note a similar anomalous result in the class
elasticity solution for an infinite plate with a circular hold underuniaxial far-field
tension.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received and accepted by the ASME Applied Mechan
Division, Mar. 27, 2000; final revision, Aug. 8, 2000. Associate Technical Editor
R. Barber.
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such a stress field is indeed a valid solution within classical e
ticity can be verified by direct substitution into the governing fie
equations and the boundary conditions.

Settingr 5a in su of ~1! reveals a stress concentration fact
~SCF! of 2 at the edge of the hole. Consider what happens to
concentration factor ifa→0 and the hole disappears. The SCF
independent ofa, so it remains equal to 2 even whena→0. This
is inconsistent with what one would expect physically, name
that the limita→0 should be the same as when the plate is wh
without a hole and has no stress concentration.

The same sort of anomalous result occurs for an elastic s
with a spherical hole. Then Lame´ @1# has that the SCF is 3/2
independent of the hole radius. Again, therefore, there is a st
concentration when the radius goes to zero, inconsistent w
physical expectations.

These anomalous results are passed by without commen
Lamé @1#. While they have no doubt been noted by elastica
since, their existence may well not be as widely appreciated to
as it could be. They are not mentioned in classical texts wh
include the Lame´ solutions~e.g., Love@2#, Art. 100, 98; Muskhe-
lishvili @3#, Art. 56a; Timoshenko and Goodier@4#, Art. 28, 136!.
Further, we could not find them discussed in any other stand
elasticity texts.1 Nevertheless they bear explaining.

Mathematically, there is a clear distinction between solids w
holes with radii tending to zero and solids without holes. Wh
a→0 in either of Lame´’s hole problems, the boundary conditio
s r50 holds atr 50. In contrast, for a plate without a hole, th
field equations hold atr 50. Such mathematical distinctions, how
ever, fall short of a fully satisfactory physical explanation.

We have been offered physical explanations of the followi
genre by a number of people: ‘‘Physically speaking, one expla
this nonuniform behavior as the presence of a stress concentra
in an imperfect body such as at the boundary of a small entrai
cavity in a casting.’’ To examine the physical appropriateness
such explanations, we consider a further limit of~1! as a→0.
Specifically, we takesu of ~1! at u50, denote it byŝy , and set
r 5la, l>1. Then

ŝy5s0~11l22! as a→0. (2)

Of course, asa→0, r 5la→0 for all l>1. Hence with this
model of an imperfection, asa tends to zero we can get any valu

ical

ics
J.

Fig. 1 Plate with hole under remote tension
2001 by ASME Transactions of the ASME
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of ŝy at r 50 betweens0 and 2s0 as the imperfection’s stres
concentration.2 This unsatisfactory situation is compounded
the ambiguity of which stress componentsx or sy is what in the
limit as a→0 for differentu. All told, such physical explanation
are quite superficial. Here, then, we seek to furnish a physic
sensible resolution of the differences between Lame´’s solutions
for plates with holes and responses for whole plates.

2 A Resolution
What is missing in the classical statement of Lame´’s hole prob-

lems is the recognition that atoms or molecules on opposite s
of any hole must start to interact with each other as the h
closes. This interaction producescohesive stresseson the hole
walls. Here we model the action of these cohesive stresses.

There are three key elements in our simple models. First,
introduce cohesive stresses via cohesive stress-separation la
hole boundaries. This simplifies the incorporation of the unde
ing solid-state physics and reduces the analysis of our mode
involving just continuum mechanics. Such an approach was
introduced in Barenblatt@6# and has seen extensive use since~Sin-
clair @7# provides a recent bibliography!. For the most part, it has
been employed in the analysis of cracks, although Levy@8,9#
treats a rigid inclusion without a crack. The implementation
cohesive stress-separation laws here could be viewed as the
of their use in Levy@8,9#.

Second, we only consider that portion of the cohesive stre
separation law near the equilibrium position. That is, we o
track the action of cohesive stresses when the hole is extrem
small. In this range, cohesive stress-separation laws can be t
as linear. Moreover, the constant of proportionality can be bac
out by insisting that the insertion of such a cohesive law wit
the continuum without any hole leaves response th
unaltered—a kind of cohesive-law patch test. For the pres
problem, this insertion is actually carried out on a circular ring
radiusR in an elastic plate with the same moduli as the origin
plate. Then such a patch test in effect accounts for the action o
the atoms external toR on all those internal, and vice vers
Again, simplification is the intent. The so-simplified treatme
does nonetheless serve to demonstrate the basic physics invo3

Third, we take our cohesive stress-separation law as acting
tween the centers of the atoms or molecules comprising the
surfaces: By symmetry, these atoms or molecules are diam
cally opposed. The consequence of this assumption is that h
close when their radii reduce to half of the equilibrium center-
center spacing of the atoms or molecules. This removes any
biguity associated witha→0.

The corresponding reformulation of Lame´’s problem for the
plate with a hole then is as follows. Throughout the plate of Fig
when a is small, we seek the axisymmetric planar stressess r ,
su , and their companion displacementur , as functions ofr, sat-
isfying the following requirements: the stress equation of equi
rium in the absence of body forces,

rs r ,r1s r2su50, (3)

for a,r ,`, 0<u,2p; the stress-displacement relations for
homogeneous and isotropic, linear elastic solid,

H s r

su
J 5mF32k

k21
U12H ur ,r

r 21ur
J G , U5ur ,r1r 21ur , (4)

2If insteadr is not fixed in terms ofa before taking the limita→0, then a state of
all-round tension obtains~see~1!!. This is a different limit, however, since under
one is moving to infinity rather than to the center of the hole.

3Insertion of an entire, nonlinear, cohesive, stress-separation law is trac
within linear elasticity because the present problems are one-dimensional. It i
appropriate, though, because the large strains incurred near the peak stres
cohesive laws really require a finite strain analysis.
Journal of Applied Mechanics
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for a,r ,`, 0<u,2p, whereinU is the dilation,m is the shear
modulus andk is 324n for plane strain, (32n)/(11n) for plane
stress,n being Poisson’s ratio; the cohesive stress-separation
on the hole boundary,

s r5k~2ur12a2d! at r 5a, (5)

for 0<u,2p, whereink is the law stiffness andd is the equilib-
rium separation of the atoms or molecules comprising the pl
and the condition applying the tension at infinity,

s r5s0 as r→`, (6)

for 0<u,2p. In addition, from our cohesive-law patch test
r 5R, we haves r5k@ur(r 5R1d/2)2ur(r 5R2d/2)#, leading
to

k54m/d~k21!. (7)

This is the value of the stiffness to be used in~5! when a is
sufficiently small.

Solution of the problem in~3!–~6! is elementary and gives

H s r

su
J 5s0H 2

1J s08
a2

r 2 , ur5
1

4m Fs0r ~k21!12s08
a2

r G , (8)

where

s085s02k
2m~2a2d!1~k11!s0a

2~m1ka!
. (9)

Observe that~8! and ~9! recover Lame´’s solution ~1! whenk50,
as they should.

Now consider what happens if the hole disappears. Introduc
k of ~7! into ~9!, and takinga→d/2 to close the hole, givess08
50. Thus from~8!,

s r5su5s0 as a→d/2. (10)

Equation~10! is the physically sensible result for a plate without
hole.

A similar reformulation and analysis for the spherical ho
problem leads to

H s r

su
J 5s0H 2

11/2J s09
a3

r 3 , (11)

where

s095s02k
4m~2a2d!13~k21!s0a

2~2m1ka!
, (12)

with k being as for plane stress. Again Lame´’s solution is recov-
ered whenk50, and a state of uniform all-round tension obtai
when a→d/2 providedk is taken so that it passes the cohesiv
law patch test in spherical polar coordinates (k58m/d(3k
25)).

Implicit in both the circular and spherical hole problems trea
here is the existence of a length scale which is considerably la
than the initial radii, and which remains fixed as radii go to ze
This additional length scale can be made explicit by instead c
sidering an annular plate and a hollow ball. The same anoma
result when internal holes are shrunk to zero: They can be r
edied by a parallel introduction of cohesive laws.

It is also possible to adapt the foregoing if one actually wan
to model an imperfection. Then the fact that material on oppo
sides of the holes had once been separated can be reflected
choice of the cohesive law as material gets back together if ind
there is some impediment which modifies this law. To be tru
physically appropriate, this choice needs to be founded in so
state physics. Such an analysis is beyond the scope of the pr
note.

In sum, the boundary conditions in Lame´’s classical solutions
for elastic solids with holes are not physically appropriate wh
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Downl
hole surfaces come into extremely close proximity with one
other. Cohesive stresses act under these circumstances. W
such proximities though, classical solutions are applicable.
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