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Correspondence Princip|e in sive reviews of ongoing FGM research may be found in the article
. . . by Hirai [10] and the book by Suresh and Mortengéa].

Viscoelastic Functionally Graded One of the primary application areas of FGMs is high-

Materials temperature technology. Materials will exhibit creep and stress

relaxation behavior at high temperatures. Viscoelasticity offers a

basis for the study of phenomenological behavior of creep and
linot stress relaxation. The elastic-viscoelastic correspondence principle

G. H. Paulino g . :

(or elastic-viscoelastic analogig probably one of the most useful

Mem.. ASME_ . tools in viscoelasticity because the Laplace transform of the vis-

e-mail: paulino@uiuc.edu coelastic solution can be directly obtained from the corresponding
elastic solution. In the present work, the correspondence principle

Z.-H. Jin is revisited in the context of viscoelastic FGMs.

Mem. ASME In this paper, the basic equations of viscoelasticity in FGMs are

formulated. The correspondence principle is established for a

. . . . class of FGMs where the relaxation moduli for shear and dilata-
Department of 'C|\{|I and Environmental _Engmeerlng, tion e(x,t) andK(x.t) take the formsu(x,t) = mome(X) F(t) and
University of lllinois at Urbana-Champaign, K(x,t)=KoK(x)g(t), respectively, wherg, andK, are material

Urbana, IL 61801 constantsz(x), K(x), f(t), andg(t) are nondimensional func-
tions, andx=(xy,X,,X3). The correspondence principle states
This paper presents an extension of the correspondence princigitat the Laplace transforms of the nonhomogeneous viscoelastic
(as applied to homogeneous viscoelastic solids) to nonhomogeriables can be obtained from the nonhomogeneous elastic vari-
neous viscoelastic solids under the assumption that the relaxatigples by replacing., and K, with MOPT(D) andK,pg(p), re-
(or creep) moduli be separable functions in space and time. Af% ectively whera‘_(p) andg(p) are the Laplace transforms of
models for gradgq viscoelastic materialg are presented and d 1t) and g’(t), respectively, angb is the transform variable. The
cussed. The revisited correspondence principle extends to SPEGHG nonhomogeneous viscoelastic solution is realized by invert-

instances of thermoviscoelasticity and fracture of functionallm ; P
. - g the transformed solution. The above correspondence principle
graded materials. [DOI: 10.1115/1.1331286 can also be extended to specific instances of thermoviscoelasticity
and fracture of FGMs.

1 Introduction 2 Basic Equations
Functionally graded material$"-GMs) are special composites  Thg pasic equations of quasi-static viscoelasticity of FGMs are

usually made from both ceramics and metals. The ceramic in g equilibrium equation

FGM offers thermal barrier effects and protects the metal from

corrosion and oxidation. The FGM is toughened and strengthened gij;=0, €))

by the metallic compositionThe composition and the VO'“methe strain-displacement relationship

fraction of the constituents vary gradually, giving a nonuniform

microstructure with continuously graded macroproperti®sgri-

ous thermomechanical problems of FGMs have been studied, for €ij :z(ui,ﬁ”i,i)' 2

example, constitutive modeling1]), fracture behaviol[2—4]), ) _ -

thermal stresse$5,6]), strain gradient effect§7]), plate bending and the viscoelastic constitutive law

problems([8]), higher order theory[9]), and so on. Comprehen- t t

S” =2f Ukk:sJ

de.
m(X,t—1) id”r,

Kix,t— ) S
. ar = g dn
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Sjj=0ij~ €xkij

3 €~ 3 kkOij »

3 3 (4)

whereu; are displacements;; is the Kronecker delta(x,t) and
K(x,t) are appropriate relaxation functions,is time, and the

Okbij, €=

the summation convention. Note that the relaxation functions al

with the shear modulugt= uou(x) and the bulk moduluk
=KK(x) provided that the transformed viscoelastic variables are

associated with the corresponding elastic variables,wgpi?(p)
andKypg(p) are associated with, andK, respectively. There-

| holds for the FGM with the material properties given in Eq.
, i.e., the Laplace transformed nonhomogeneous viscoelastic

Latin indices have the range 1, 2, 3 with repeated indices implyi%& thecorrespondence principli&é homogeneous viscoelasticity

depend on spatial positions, whereas in homogeneous viscoe

ticity, they are only functions of time, i.epu=u(t) and K
=K(t) ([12)).

SoOlution can be obtained directly from the solution of the corre-
sponding nonhomogeneous elastic problem by replagipgnd

For a boundary value problem, the boundary conditions affe With #opf(p) and Kopg(p), respectively. The final solution is

given by
on B

®)
(6)

O'ijnj:S,

Ui:Ai,

o

on By,

realized upon inverting the transformed solution

4 Some Models for Graded Viscoelastic Materials
Among the various models for graded viscoelastic materials are

wheren; are the components of the unit outward normal to thihie standard linear soliddefined by

boundary of the body$, are the tractions prescribed &;., and
A; are the prescribed displacements Bp. The parts of the

boundaryB, andB,, are required to remain constant with time.

3 Correspondence Principle

t
(X 0) = oo (X) + [ pe(X) — ,ux(X)]exﬁ{ -
RIS BT

t
K(x,t>—Kx<x>+[Ke<x>—Kx<x>]ex;{_ -

In general, the correspondence principle of homogeneous vike power-law model

coelasticity may not hold for FGMs. To circumvent this problem,
we consider a class of FGMs in which the relaxation function%(x t) = po(X)

have the following general form:
(1) = pop(x)F(1),
K(x,1)=KoK(x)g(1),

()

where uy, andK, are material constants, ang(x), R(x), f(t),
andg(t) are nondimensional functions. The constitutive [@yis
then reduced to

- t de|j
Sij=2mom(X) | f(t—7) 5 —d7,
’ ®)
~ ! dexk
Ukk:3KOK(X) g(t*’T)d_dT
0 T

t,(x)]
t

tk(x)
t

v KX )=Ke(x)

q

} ,  0<qg<1,
(17)

and theMaxwell material

t
M(X.t):Me(X)EXF{ , K(th):Ke(X)eXF{tK(—X)

t
t,(X)

wheret ,(x) andtk(x) are the relaxation times in shear and bulk
moduli, respectively, and is a material constant. The discussion
below indicates the revisions needed in the general models so that
the correspondence principle holds.

+ Standard Linear Solid16). If the relaxation timeg , andty
are constant, ifug(x) and u..(x) have the same functional form,
and if K¢(x) andK,(x) have the same functional form, then the

By assuming the material initially at rest, the Laplace transformgandard linear solid satisfies assumptign

of the basic Eqs(1), (2), (8), and the boundary conditioris) and
(6) are obtained as

aijj=0, 9)

_ 1 _ _
eijzz(ui,j+uj,i)v (10)
5= 2uoR(x)PT(P)E;; (12)
0= 3KoK(X)PY(P) €, (12)
;”-nj:g, on B,, (13)
Ui=4;, onBy, (14)

where a bar over a variable represents its Laplace transform,
p is the transform variable. Thus

;iizf o exp(—ptydt, ?”:f &ij exp(—pt)dt,

0 0

E=Fui exp(— pt)dt, f_(p)zfmf(t)exp(—pt)dt, (15)
0 0

* Power Law Model(17). It is seen that if the relaxation times
t, andty are independent of spatial position, then the assumption
(7) is readily satisfied. Moreover, even if the relaxation times
depend on the spatial position {&7), the correspondence prin-
ciple may still be applied with some revision, which consists of
taking the corresponding nonhomogeneous elastic material with
the following properties:

p= e[, (019 K=K (X)[t(X)]%

instead ofu= ue(X) andK=Kq(X).

» Maxwell Material (18). If the relaxation times,, andty are
independent of spatial position, the assumpti{@nis promptly
satisfied.

(19)

d . .
a§ Thermoviscoelastic Problem

The basic equations of thermoviscoelasticity of FGMs are iden-
tical to those of viscoelasticity except the constitutive law. The
constitutive relation for thermoviscoelastic FGMs is given by

Sij=2 0,U,(X,t— 7) Fdﬂ
(20)

fxg(t)exq— pt)dt.
0

t _
g(p) a'kaSJ’ K(X,t—r)MdT,

0 dr

It is seen that the set of Eq§)—(12), and conditiong13) and whereT is the temperature and(x) is the coefficient of thermal
(14) have a form identical to those of nonhomogeneous elasticigxpansion. Herer is assumed to be time-independent. By apply-
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ing the Laplace transform to the above equation and adopting theThe integral of the term within parentheses(#¥) is the so-

form of the relaxation functions given ifY), we obtain called C* integral (e.g.,[15]) which is valid for homogeneous
— ~ - — ~ — - — viscous materials undergoing steady-state creep. The extra term in
Sij=2mon(¥)PT(P)eij,  Ti=3KK(X)PY(P) (€~ aT), (24), which appears outside the parentheses, is due to the modulus

_ o _ variation. Equation(24) can be seen as an extension of &
while the constitutive relation of the nonhomogeneous thejntegral for nonhomogeneous viscous media. Theintegral is a
moelasticity may be expressed as 3 special case of th&,-integral derived by SchapefiL6] by means

§;=2u0u(X)€;,  Ta=3KoK(X)(e— aT). (22) of correspondence principle arguments. The latter integral ac-

. . ) counts for a wide range of time-dependent material behavior, and
Thus it can be seen that the correspondence principle still holdgq|,des viscous creep as special case.

6 A Path-Independent Integral

The J-integral ([13]) has been extended to certain classes of )
elastic materials with varying Young’s modulus in the crack-lind A Simple Example

direction by Honein and Herrmanfi4]. Here, aJ-like path-  As an example of application, we consider an infinite strip of
independent integral is presented for characterizing fracture viiidth h occupying the region €x;<h, —o<x,<®, —w<X,
nonhomogeneous viscous materials. <. Itis assumed that the strip deforms in the-x, plane under

Consider the shear modulus with the specific functional formthe plane-strain conditions. A “fixed grip” loading condition is
_ considered, i.e.e;(X;,*=®)=¢€y, Wheree, is a constant. The
P(X1%2,1) = pro(Xo) EXHBX) (1) (23) nonvanishing stress,, in a nonhomogeneous elastic material
where uo(X,) is an arbitrary function ok, and g is an arbitrary with the Young’s modulu€=E(x;) and the Poisson’s ratio
material constant. Note th&23) has the form given iri7). More- = uw,(x,) is given by([4])
over, the Poisson’s ratio is assumed to be independext.ofhe

proposed integral to characterize crack growth in such graded ma- Ee(X1)€o _ 4€ope(X)[3Ke(Xy) + pe(X1)] (26)
terial undergoing creep is 21— 12(xq) 3Ko(Xq) + 4 e(Xy) '
: au; , i i :
c: :J (Wnl_gijnjﬁl> -~ ggijnjui ds (24) where the following relations are used:
i ' 9K epte 3Ke—2pte
wherel" is a contour enclosing the crack tip; is the first com- Ee:gKeJrMe' Ve™ 2(3Ko+ o) @7)

ponent of the unit outward normal 1§ oy;n;=S; are the compo- _ o
nents of tractions alongj, ds is an infinitesimal length element According to the correspondence principle, the Laplace transform

along the contouF, andW is the stress work ratgowen density c_Jf the stress_in a visc_oelastic FGM with the shearing and _dilata-
tional relaxation functionge = uo(x1) f(t) andK=Ky(x1)g(t) is

defined as ;
) given by
- €kl . — — Yy
w= fo oijdei (25) — _Aeope(x)f(P)[3Ke(x1)9(p) + pe(x0) f(P)]
022~ (28)

. . . L . 3Ke(X)g(P) + 4 ue(Xy)f
The integral(24) has been obtained by replacing strain with strain e(X)Q(P) + Ane(x)T(P)
rates, and displacement with displacement rates in the correspodr the Maxwell materia(18) with constant relaxation times,
ing Je-integral ([14]) for nonhomogeneous elastic materials. andty , the above transformed stress becomes

— [4eopelx)/(p+ U, II3K(x0)/(p+ 1) + palx)/(p+ 11,
e 3K (x)/(p+ 1) + Ape(x)) (p+11,) '

(29)

By inverting (29), we get the stress in the time domain as followsand g(p) are the Laplace transforms &{t) and g(t), respec-
tively, andp is the transform variable. The final nonhomogeneous
9Ke(x1) exr{ - Apre(X0)t [t 3Ke(x1) i viscoelastic solution is realized by inverting the transformed solu-
Ape(Xq) +3Ke(Xy) Aun(X1) +3Ke(x1) tion. Equivalently, if the creep functionk (x,t) andJ,(x,t) have
¢ separable forms in space and time, then the correspondence prin-
+ex;{ - C) ] me(X1) €o. (30) ciple (as employed hejds also directly applicable.

022
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Elastic solids with holes under remote tension are reconsidere
When hole dimensions are shrunk so that holes disappear, anor
lies occur in the classical elasticity solutions of LanBy intro-
ducing cohesive laws on hole surfaces as they shrink, the
anomalies may be removedDOI: 10.1115/1.1331285

1 The Issue

Sketched in Fig. 1 is the Lamgroblem of an infinite elastic
plate, weakened by a circular hole of radimisunder a uniform
remote tensionry. In cylindrical polar coordinateéFig. 1), the
stresses in its classical solution are given in Lditleand are

o, - a?
delg

I3
for asr<o, 0<6<27w. The companion shear stress componei
is zero by virtue of the axisymmetry of the configuration. Ths

Elastic plate

1Swain [5], pp. 121,122, does note a similar anomalous result in the classic
elasticity solution for an infinite plate with a circular hold underiaxial far-field
tension.
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of &, atr=0_betweeno, and 27, as the imperfection’s stressfor a<r <c, 0= <2, whereinO is the dilation,u is the shear

concentratiorf. This unsatisfactory situation is compounded bynodulus and is 3— 4w for plane strain, (3- v)/(1+ ») for plane

the ambiguity of which stress component or o, is what in the = stress,» being Poisson’s ratio; the cohesive stress-separation law

limit as a— 0 for differentd. All told, such physical explanations on the hole boundary,

are quite superficial. Here, then, we seek to furnish a physically

sensible resolution of the differences between [anselutions or=k(2u,+2a-4) at r=a, ®)

for plates with holes and responses for whole plates. for 0=< @< 2, whereink is the law stiffness and is the equilib-
rium separation of the atoms or molecules comprising the plate;
and the condition applying the tension at infinity,

2 A Resolution o,=0p as r—m, (6)

e o ovpimns g 0= 2. In adion rom ou cohesive-aw patch tes a
. . =R, we haveo,=k[u,(r=R+ §/2)—u,(r=R—6/2)], leading

of any hole must start to interact with each other as the hotlg r

closes. This interaction produceshesive stressesn the hole

walls. Here we model the action of these cohesive stresses. k=4ul8(k—1). (7)
There are three key elements in our simple models. First, we ) )

introduce cohesive stresses via cohesive stress-separation laws g is the value of the stiffness to be used(8 whena is

hole boundaries. This simplifies the incorporation of the underlpufficiently small.

ing solid-state physics and reduces the analysis of our models tdS0lution of the problem i13)—(6) is elementary and gives

involving just continuum mechanics. Such an approach was first 2 2

introduced in Barenblaf6] and has seen extensive use siffia- {‘TV] = UO[ _J a ool (k— 1)+20(')i , (8

clair [7] provides a recent bibliographyFor the most part, it has r

been employed in the analysis of cracks, although LE8)9] here

treats a rigid inclusion without a crack. The implementation of

cohesive stress-separation laws here could be viewed as the dual ) 2u(2a—8)+(k+1)opa

of their use in Levy(8,9]. 0p=00— 2 (u+ka) . (9)
Second, we only consider that portion of the cohesive stress- K

separation law near the equilibrium position. That is, we onl@bserve that8) and(9) recover Lam&s solution (1) whenk=0,

track the action of cohesive stresses when the hole is extremalythey should.

small. In this range, cohesive stress-separation laws can be takeNow consider what happens if the hole disappears. Introducing

as linear. Moreover, the constant of proportionality can be backgaht (7) into (9), and takinga— /2 to close the hole, gives;,

out by insisting that the insertion of such a cohesive law withia- o, Thus from(8),

the continuum without any hole leaves response there

unaltered—a kind of cohesive-law patch test. For the present o, =0y=0y as a— /2. (10)

problem, this insertion is actually carried out on a circular ring %

’ _
ooz, W=

Ty + r Au

radiusR in an elastic plate with the same moduli as the origin quation(10) is the physically sensible result for a plate without a

plate. Then such a patch test in effect accounts for the action of L . . .
the atoms external t® on all those internal, and vice versa. A similar reformulation and analysis for the spherical hole
Again, simplification is the intent. The so-simplified treatmen'?rObIem leads to
does nonetheless serve to demonstrate the basic physics involved. o _ ad
Third, we take our cohesive stress-separation law as acting be- [ r} = 00{ n 1/2] o7, (11)
tween the centers of the atoms or molecules comprising the hole r
surfaces: By symmetry, these atoms or molecules are diameighere
cally opposed. The consequence of this assumption is that holes
close when their radii reduce to half of the equilibrium center-to- . 4p(2a—=0)+3(k—1)opa
center spacing of the atoms or molecules. This removes any am- o= 00~ 2(2u+ka) '
biguity associated witla— 0. ) ) o, o
The corresponding reformulation of Lafseproblem for the With « being as for plane stress. Again Laseolution is recov-
plate with a hole then is as follows. Throughout the plate of Fig. @red wherk=0, and a state of uniform all-round tension obtains
whena is Sma”, we seek the axisymmetric p|anar Streﬁps whena— 6/2 prO\_/Idedk IS _taken so that it passes the cohesive-
oy, and their companion displacement, as functions of, sat- law patch test in spherical polar coordinatek=@u/d(3x

isfying the following requirements: the stress equation of equilib=5))- . .
rium in the absence of body forces, Implicit in both the circular and spherical hole problems treated

here is the existence of a length scale which is considerably larger
than the initial radii, and which remains fixed as radii go to zero.
This additional length scale can be made explicit by instead con-
gidering an annular plate and a hollow ball. The same anomalies
homogeneous and isotropic, linear elastic solid, result when internal holes are shrunk to zero: They can be rem-
edied by a parallel introduction of cohesive laws.
It is also possible to adapt the foregoing if one actually wanted
{‘TrJ — O=u. +rtu (4) to model an imperfection. Then the fact that material on opposite
as H ' o n sides of the holes had once been separated can be reflected in the
choice of the cohesive law as material gets back together if indeed
2If insteadr is not fixed in terms of1 before taking the limia—0, then a state of there is some impediment which modifies this law. To be truly
all-round tension obtainesee(1)). This is a different limit, however, since under it physically appropriate, this choice needs to be founded in solid-

one is moving to infinity rather than to the center of the hole. _ state physics. Such an analysis is beyond the scope of the present
Insertion of an entire, nonlinear, cohesive, stress-separation law is tracta

within linear elasticity because the present problems are one-dimensional. It is not " . . . . .

appropriate, though, because the large strains incurred near the peak stresses [ sum, the boundary conditions in Lamelassical solutions

cohesive laws really require a finite strain analysis. for elastic solids with holes are not physically appropriate when

Ty

12)

roy +o,—0s=0, )

for a<r<, 0=<6<2; the stress-displacement relations for

S—Ke 2 U r
k—1 * r’lu,
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