INTRODUCTION TO THE PPR (PARK-PAULINO-ROESLER) MODEL GRAPHICAL USER INTERFACE (GUI)

- This document provides instructions on how to use the graphic user interface (GUI) for PPR cohesive zone model.
- The purpose of the GUI is to provide the user with a means to visualize the PPR model without worrying about actual implementation details.
- To launch the GUI, download the three companion files into MATLAB.
 - PPR_window.m
 - PPR_window.fig
 - cohesivePPR.m

In the command window of MATLAB type "PPR_window" (minus the quotations) and a GUI will appear that looks similar to:

• The user inputs are on the left hand side of the GUI:

USER INPUT (PPR Model Paremeters)	1	
40 Cohesive Strength [MPa] 100 Total Fracture Energy [N/m] 5 Shape Parameter 0.1 Initial Slope Indicator		Strength of material in pure mode I loading Area under Load-CMOD curve in pure mode I loading See below for explanation Initial penalty stiffness for intrinsic elements only
Tangential Parameters 30 Cohesive Strength [MPa] 200 Total Fracture Energy [N/m] 2 Shape Parameter 0.2 Initial Slope Indicator Intrinsic Extrinsic		Strength of material in pure mode II loading Area under Load-CMOD curve in pure mode II loading See below for explanation Initial penalty stiffness for intrinsic elements only Chose whether intrinsic or extrinsic model

The shape parameters, asked for in the user input panel α and β , are defined as below for the normal direction (T_n) and the tangential direction (T_i) , respectively.

• To run the analysis, push the button labelled "RUN ANALYSIS", located in the bottom left corner of the GUI.

• Sample Results

The results of the analysis include plots of the normal traction-separation relationship, the tangential traction-separation relationship, and the potential function, defined in the supporting documentation for both the intrinsic and extrinsic cases.

Also included in the results is a list of the final crack opening widths, defined as follows:

- Normal crack opening width (δ_n) ,
- Tangential crack opening width (δ_t) ,
- Conjugate normal crack opening width $(\overline{\delta}_n)$, and
- Conjugate tangential crack opening width $(\overline{\delta_t})$

seen plotted in the figure below.

All of the mathematical formulations are provided in the supporting documentations and presentations, found on the website where the MATLAB files were downloaded.