Laboratory 8

<table>
<thead>
<tr>
<th>Function</th>
<th>Variable Passed In</th>
<th>Size</th>
<th>Variable Passed Out</th>
<th>Size</th>
<th>Functions Called</th>
</tr>
</thead>
<tbody>
<tr>
<td>ud_elfem.m</td>
<td>L</td>
<td>1 by 1</td>
<td>FEML</td>
<td>1 by 12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>w</td>
<td>1 by 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ud_femfemg.m</td>
<td>L</td>
<td>1 by 1</td>
<td>FEMG</td>
<td>1 by 12</td>
<td>ud_elfem.m</td>
</tr>
<tr>
<td></td>
<td>del</td>
<td>1 by 3</td>
<td></td>
<td></td>
<td>ud_trans.m</td>
</tr>
<tr>
<td></td>
<td>webdir</td>
<td>1 by 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>w</td>
<td>1 by 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ud_femffems.m</td>
<td>nele</td>
<td>1 by 1</td>
<td>FEMF</td>
<td>NFDOF by 1</td>
<td>ud_femfemg.m</td>
</tr>
<tr>
<td></td>
<td>ends</td>
<td>nele by 2</td>
<td>FEMS</td>
<td>NSDOF by 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>coord</td>
<td>nnodes by 3</td>
<td>FEMG</td>
<td>nele by 12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>webdir</td>
<td>nele by 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>w</td>
<td>nele by 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>norder</td>
<td>nnodes by 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>nfdof</td>
<td>1 by 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>nsdof</td>
<td>1 by 1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
function `FEML = ud_elfem(L,w)`

Function purpose:
This function generates the element fixed end moments in the element's local coordinate system based on uniformly distributed loads.

Functions Called
< none >

Dictionary of Variables
Input Information:

- `L` == length of element

 NOTE: It is better to use "L" rather than "l" to avoid typo mistakes (e.g. typing l rather 1).
- `w(1)` == wx, uniform load along x-axis of element
- `w(2)` == wy, uniform load along y-axis of element
- `w(3)` == wz, uniform load along z-axis of element

Output information:

- `FEML(12)` == element fixed end moments (row)
 - `FEML(1)` == x-force at start node
 - `FEML(2)` == y-force at start node
 - `FEML(3)` == z-force at start node
 - `FEML(4)` == x-moment at start node
 - `FEML(5)` == y-moment at start node
 - `FEML(6)` == z-moment at start node
 - `FEML(7)` == x-force at end node
 - `FEML(8)` == y-force at end node
 - `FEML(9)` == z-force at end node
 - `FEML(10)` == x-moment at end node
 - `FEML(11)` == y-moment at end node
 - `FEML(12)` == z-moment at end node

Local Information (suggested):

- `ele` == element # being investigated
- `L` == length of element

 NOTE: It is better to use "L" rather than "l" to avoid typo mistakes (e.g. typing l rather 1).
- `del(3)` == difference in element ele's x,y,z coordinates
- `dof` == DOF # being investigated
- `row` == variable used for loop index
- `ivar(i)` == global DOF # corresponding to local DOF i of element being investigated
- `arow` == variable used for array index

Output information:

- `FEMP(NFDOF)` == Free part of global fixed end moment vector
- `FEM(S(NFDOF)` == Supported part of global fixed end moment vector
- of the global stiffness matrix
- `FEMG(ele,12)` == element ele's fixed end moments in global coordinate space

NOTE:
Using the local and global DOF #’s, insert the element's fixed end force values into the correct locations in (FEMP) and (FEMG). The procedure is the following:
- -> check whether current DOF is Free (F) or Support (S)
- -> if free, put element's corresponding fem into (FEMP)
- -> otherwise, put fem entry into [FEMG]
- It is important to notice that we must add the current element's fem to any fem's already present in either (FEMP) or (FEMG).

% Good Luck CEE 361 Student!

function `FEMP = ud_femfem(L,del,webdir,w,...
 norder,nfdo,nsdof)`

Function purpose:
This function determines the global fixed end moments with reference to the global coordinate space.

Functions Called
- `FEMP=ud_elfem(L,w)`

 determines the local fixed end moments for a given element
- `T=ud_trans(del,webdir)`

 determines the transformation matrix for a given element

Dictionary of Variables
Input Information:

- `ele` == total number of elements
- `ele(1)` == element ele's start and end nodes

 coord(i,1,3) == node i’s x,y,z coordinates

 webdir == element ele's web unit vector

 w(ele,1,3) == element ele’s wx,wy,wz uniform loads

 nfdo == actual number of Free DOFs

 nsdo == actual number of Support DOFs

 norder(i,6) == free and supported DOF #’s corresponding to node i’s 5 DOFs.

 NOTE: norder will be positive if the DOF of the node is 'free' and norder will be negative if the DOF of the node is 'support'.

Local Information:

- `T(12,12)` == element’s transformation matrix (row,col)
- `felm(12)` == element’s fixed end moments in local space

Output information:

- `FEMP(12)` == element fixed end moments (generalized forces) referencing global coordinate space

% Good Luck CEE 361 Student