Tutorial for MASTAN2
version 1.0

Developed by:

Ronald D. Ziemian
Associate Professor of Civil Engineering
Bucknell University

William McGuire
Professor of Civil Engineering, Emeritus
Cornell University
Tutorial Topics

- Introduction
- Getting started
- Window layout
- Step-by-step example
- Samples of MASTAN2 models
- Overview of commands
- Programming user defined code
- Additional information

< click on a topic >
MASTAN2 is an interactive graphics program that provides preprocessing, analysis, and postprocessing capabilities. Preprocessing options include definition of structural geometry, support conditions, applied loads, and element properties. The analysis routines provide the user the opportunity to perform first- or second-order elastic or inelastic analyses of two- or three-dimensional frames and trusses subjected to static loads. Postprocessing capabilities include the interpretation of structural behavior through deformation and force diagrams, printed output, and facilities for plotting response curves. MASTAN2 is based on MATLAB®, a premier software package for numeric computing and data analysis.

In many ways, MASTAN2 is similar to today’s commercially available software in functionality. The number of pre- and post-processing options, however, have been limited in order to minimize the amount of time needed for a user to become proficient at its use. The program’s linear and nonlinear analysis routines are based on the theoretical and numerical formulations presented in the text *Matrix Structural Analysis, 2nd Edition*, by McGuire, Gallagher, and Ziemian. In this regard, the reader is strongly encouraged to use this software as a tool for demonstration, reviewing examples, solving problems, and perhaps performing analysis and design studies. Where MASTAN2 has been written in modular format, the reader is also provided the opportunity to develop and implement additional or alternative analysis routines directly within the program.

MATLAB is a registered trademark of The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098.
Two versions of MASTAN2 have been provided on your CD-ROM. The difference between these versions is that one requires the user to have access to MATLAB from their computer and the other does not. If MATLAB is available on your computer, Method 1 is recommended for starting MASTAN2.

Method 1 (Users who have access to MATLAB): Copy the appropriate MASTAN2 folder from your CD to your computer (see installation instructions). Start the MATLAB program. From the MATLAB Command Window select **File** and then **Set Path**. From the **Path Browser** window click on the **Browse**... button and set the **Current Directory** to the location of the MASTAN2 folder. Select **File-Exit** to exit the **Path Browser**. To avoid having to do this each time you start the MATLAB program, you can use the **Add to Path**... option located in the **Path** menu of the **Path Browser** window. This can add the MASTAN2 directory to your MATLAB path settings. After using either of these procedures, type `mastan2` (only lower case letters with no spaces) at the MATLAB command line prompt `>>` and the MASTAN2 graphical user interface (GUI) should start. If the GUI does not start, and you get the message `??? Undefined function or variable 'mastan2'`, you have not properly set the current directory or path to point to your MASTAN2 folder.

Method 2 (PC-Users who do not have access to MATLAB): A version of MASTAN2 that runs from the MATLAB Runtime Server is also included on your CD. Copy the folder labeled MASTAN2 from your CD to your computer. Locate this folder on your computer’s hard drive and start the application by double clicking on the **matlab** or **matlab.exe** icon. Note that this version provides all the same functionality except you cannot prepare user defined code that will interact with MASTAN2.
Overview:
In order to minimize the learning time for MASTAN2, its graphical user interface (GUI) has been designed using a simple and consistent two menu approach. Using a pull-down menu at the top of the GUI, a command is selected. Parameters are then defined in the bottom menu bar and the command is executed by using the Apply button.
Step-by-Step Example

- Problem description
- Geometry definition
- Section and material properties
- Loads and support conditions
- First-order elastic analysis
- Results: diagrams, reports, and response curves
- Other methods of analysis

< click on a topic >
A two-bay single story frame will be used to illustrate several of the preprocessing, analysis, and postprocessing capabilities of MASTAN2.

Columns: W10x45
- A = 13.3 in\(^2\)
- I = 248 in\(^4\)
- Z = 54.9 in\(^3\)

Girders: W27x84
- A = 24.8 in\(^2\)
- I = 2850 in\(^4\)
- Z = 244 in\(^3\)

All members: A36 Steel
- E = 29,000 ksi
- \(\sigma_y = 36\) ksi

P = 320 kips

0.1P

0.5P

20’-0”

40’-0”

24’-0”
Geometry Definition

Part I: Frame Definition

1. From the Geometry menu select Define Frame.
2. At the bottom menu bar, click in the edit box to the left of bays @ and change the 0 to 2. Click in the edit box just to the right of bays @ and change the 0 to 240.
3. Click in the edit box to the left of stories @ and change the 0 to 1. Click in the edit box just to the right of stories @ and change the 0 to 288.
4. Click on the Apply button.
5. A two-bay single story frame is now defined.

Notes:

a. Edit boxes will accept math expressions. For example, typing 24*12 is the same as typing 240. In all cases, only one value may be executed in any edit box.

b. A three dimensional structure is defined by providing the number of frames (a value greater than 1) and the appropriate spacing.
Part II: Refinement

1. From the **Geometry** menu select **Move Node(s)**.
2. At the bottom menu bar, click in the edit box to the right of **Delta x = 0** and change the **0** to **240**.
3. Create the list of nodes by clicking on the two rightmost nodes. Note that selected nodes (or elements) turn magenta and their numbers are added to the **Node(s):** list.
4. Click on the **Apply** button.
5. From the **View** menu select **Fit**.
6. From the **Geometry** menu select **Subdivide Element(s)**.
7. Create the list of elements by clicking on each vertical element.
8. Since the number of segments is already set at **2**, click on the **Apply** button.

Note:

To remove a node or element number from a list, click on it again. To remove all numbers from the node or element list, click on the **Clr** box to the right of **Node(s):** or **Element(s):**.
Part I: Section Properties

1. From the Properties menu select Define Section.
2. At the bottom menu bar, click in the edit box just to the right of Area = and change the 0 to 13.3. Similarly, define Izz = 248 and Zzz = 54.9. Click on the Apply button (Section 1 is now defined with the properties of a W10×45).
3. Repeat step 2 using Area = 24.8, Izz = 2850 and Zzz = 244. After clicking the Apply button, Section 2 will be defined with the properties of a W27×84.
4. From the Properties menu select Attach Section.
5. At the bottom menu bar, create the list of elements to be assigned Section 1 by clicking on each vertical element. Click on the Apply button (note that elements with assigned section properties turn from dash-dot to dashed).
6. Advance the Section # by clicking on the > box. Select the Ctlr button located to the right of Element(s): to clear the list of element numbers.
7. Assign Section 2 properties to all horizontal elements by repeating step 5.

Note: Section properties refer to the element’s local coordinate system with x being along its length axis, the y-axis oriented as shown by the element’s web direction (see View-Labels-Element Web) and the z-axis defined by the right hand cross product of these x- and y-axes.
Part II: Material Properties

1. From the Properties menu select Define Material.
2. At the bottom menu bar, click in the edit box just to the right of $E =$ and change the 0 to 29000 (not 29,000). Similarly, define $F_y = 36$. Click on the Apply button (Material #1 is now defined with the properties of A36 steel).
3. From the Properties menu select Attach Material.
4. At the bottom menu bar, create the list of elements to be assigned the properties of Material 1 by clicking on the All button to the right of Element(s). Click on the Apply button (note that elements with assigned section and material properties turn to solid).

Notes:
1. MASTAN2 will work for any consistent set of units. In this example all force units are in kips and all length units are in inches.
2. Similar to section properties, properties for more than one material can be defined and assigned to different elements.
Part I: Support Conditions

1. From the Conditions menu select Define Fixities.
2. At the bottom menu bar, define a fixed support by clicking in the check boxes just to the left of X-disp, Y-disp, and Z-rot.
3. Create the list of nodes to be assigned these fixities by clicking on the bottom three nodes of the model.
4. Click on the Apply button.
5. From the View menu select Fit.

Notes:
1. Red arrows indicate the degrees of freedom at a node that are restrained.
2. MASTAN2 provides the opportunity to analyze structures as two or three dimensional. For two dimensional analyses, only degrees of freedom in the x-y plane need to be restrained. On a related topic, additional section properties would be needed to analyze this system as three-dimensional.
Part II: Loads

1. From the **Conditions** menu select **Define Forces**.
2. At the bottom menu bar, click in the edit box just to the right of $P_X =$ and change the 0 to 32.
3. Create the list of nodes to be assigned this force by clicking on the upper left node of the model. Click on the **Apply** button.
4. Click in the edit box just to the right of $P_X =$ and change the 32 to 0 and then click in the edit box just to the right of $P_Y =$ and change the 0 to -320.
5. Create the list of nodes to be assigned this force by first clearing the node list by clicking on the **Clr** button and then clicking on the node at the top of the center column. Click on the **Apply** button.
6. Repeat steps 4 and 5 using $P_Y = -160$ and applying this force to the upper right node of the model. From the **View** menu select **Fit**.

Notes:

1. To remove a support or load condition from a node or group of nodes, first create the node list and then with all conditions blank or zero, click on **Apply**.
2. Green arrows represent applied forces.
3. The conditions at a node may be checked with **Geometry-Information-Node**.
1. From the **Analysis** menu select **1st-Order Elastic**.
2. At the bottom menu bar, click on the pop-up menu just to the right of **Analysis Type:** and select **Planar Frame (x-y)**.
3. Click on the **Apply** button to perform the analysis.

Although the following steps are not required for us to proceed, this is a good time to perform them.

a. From the **File** menu select **Define Title**. At the bottom menu bar, click in the edit box to the right of **Title:** and type in a brief description of this effort. This text might include the model title, your name, and/or the assignment number. Click on the **Apply** button.

b. From the **File** menu select **Save As...**. After selecting your destination folder, type in the filename **example** and click **Save**. Note that the top of the window has now changed to include the file name and directory as well as the time the file was last saved.

Note:

Only alpha-numeric file names may be used.
Results

MASTAN2 has several postprocessing capabilities. A sampling of them and their use are illustrated below.

- Deflected shape and node displacements/reactions
- Force diagrams and element force information
- Printing photos and creating a text report
- Plotting response curves with MSAPLOT

< click on a topic >
Deflections and Reactions

Part I: Deflected Shape
1. From the **Results** menu select **Diagrams** and submenu **Deflected Shape**.
2. At the bottom menu bar, click on the **Apply** button.

Part II: Displacement Values at a Node
1. From the **Results** menu select **Node Displacements**.
2. On the undeflected shape, click on a node of interest and its displacement components are provided in the bottom menu bar. Repeat for other nodes.

Part III: Reactions at a Node
1. From the **Results** menu select **Node Reactions**.
2. Click on a node of interest and any applicable reaction components are provided in the bottom menu bar. Repeat for other nodes.

Notes:
1. The scale of the deflected shape may be changed by editing the number to the right of **Scale** and clicking on the **Apply** button.
2. A smoother diagram can be obtained by increasing the value to the right of **# of pts** and clicking on the **Apply** button.
3. As an alternative to step 2 in parts II and III, displacement and reaction components at a node can be obtained by typing the node number in the edit box to the right of **Node:** and then clicking on the **Apply** button.
Deflected Shape: 1st-Order Elastic, Incr #1, Applied Load Ratio = 1
Element Force Diagrams and Values

Part I: Moment Diagram

1. From the **Results** menu select **Diagrams** and submenu **Moment Z**.
2. At the bottom menu bar, click on the **C** or **T** box between **Moment Z Side** depending on whether you want the moment diagram drawn on the compression or tension side of the member.
3. Click on the **Apply** button. From the **View** menu select **Fit**.

Part II: Internal Element Forces and Moments

1. From the **Results** menu select **Element Results**.
2. Click on an element of interest and its internal forces at the start node of the element are provided in the bottom menu bar. Repeat for other elements.
3. To view element forces at a location along the length of the element including the end node, move the slider at the lower left of the bottom menu so it reads the desired fraction of the element length and click **Apply**.

Notes:

1. Moment diagram values may be turned on and off with **View-Labels-Diagram Values**.
2. As an alternative to step 2 in part II, element forces can be obtained by typing the element number in the edit box to the right of **El #** and then clicking on the **Apply** button.
Photos and Text Reports

I. Printing Photos
1. To print a photo of the main model window, select Print Photo… from the File menu. Note that the title is also printed at the base of the photo.

II. Creating Text Reports
1. From the File menu select Create Report....
2. At the bottom menu bar, click on the check boxes just to the left of the desired information.
3. Click on the Apply button and this information is printed to the main text window. Use the scroll button to move up or down in the report.
4. To save the text report to a file that can be read and, in turn, printed by any word processor or text editor, click on the Save Text button and provide a destination folder and file name.
5. Click on the Cancel button to return to the main model window.

Note:
Information printed to the main text window will remain, even after the Cancel button is clicked, until the Clear button is clicked. In this way, additional information such as the results from a different analysis can be added later.
MASTAN2 v1.0

Time: 21:37:57 Date: 06/01/1999

Problem Title: Tutorial Example

Input for Structural Analysis

General Information Categories:

(i) Number of Nodes = 9
(ii) Number of Elements = 8
(iii) Number of Sections = 2
(iv) Number of Materials = 1
(v) Number of Supports = 3
(vi) Applied Loads

(i) Node Information

Coordinates

<table>
<thead>
<tr>
<th>Node</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.000e+000</td>
<td>0.000e+000</td>
<td>0.000e+000</td>
</tr>
<tr>
<td>2</td>
<td>2.400e+002</td>
<td>0.000e+000</td>
<td>0.000e+000</td>
</tr>
<tr>
<td>3</td>
<td>7.200e+002</td>
<td>0.000e+000</td>
<td>0.000e+000</td>
</tr>
<tr>
<td>4</td>
<td>0.000e+000</td>
<td>2.880e+002</td>
<td>0.000e+000</td>
</tr>
<tr>
<td>5</td>
<td>2.400e+002</td>
<td>2.880e+002</td>
<td>0.000e+000</td>
</tr>
<tr>
<td>6</td>
<td>7.200e+002</td>
<td>2.880e+002</td>
<td>0.000e+000</td>
</tr>
<tr>
<td>7</td>
<td>0.000e+000</td>
<td>1.440e+002</td>
<td>0.000e+000</td>
</tr>
<tr>
<td>8</td>
<td>2.400e+002</td>
<td>1.440e+002</td>
<td>0.000e+000</td>
</tr>
<tr>
<td>9</td>
<td>7.200e+002</td>
<td>1.440e+002</td>
<td>0.000e+000</td>
</tr>
</tbody>
</table>

Fixities

<table>
<thead>
<tr>
<th>Node</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>X Rot</th>
<th>Y Rot</th>
<th>Z Rot</th>
</tr>
</thead>
</table>

Select Requested Information and Apply

Status: Success: Data printed to screen.

- General Info.
- Geometry
- Properties
- Conditions
- Displacements
- Element Results
- Reactions

Incr # < 1 >

Apply Cancel
1. To use the plotting module that is provided with MASTAN2, select **MSAPlot** from the **Results** menu.

Part I. Axes Definition

1. From the MSAPlot **Curves** menu select **Define X-Data**.
2. At the center of the bottom menu bar, click on the pop-up menu and select **Displacement**.
3. Click in the edit box to the right of **Node #** and type **4**.
4. Click on the **Apply** button (x-axis is now defined but nothing plotted).
5. Repeat steps 1 to 4, using **Define Y-Data** to monitor the **Applied Force or Moment** above the center column. Set **Node #** to **5**, **d.o.f.** to **y** (vertical force), and the scale to **-1** (to plot in upper right quadrant).

Notes:

1. In MSAPlot, all node and element numbers must be typed; clicking on a node or element in the MASTAN2 window will not automatically enter its number in a MSAPlot menu.
2. If an error is made while using **Define**, redefine the parameters and select **Apply**.
3. By also using **Define Z-Data**, MSAPlot can create three-dimensional plots.
Part II. Generate a Curve

1. From the MSAPlot **Curves** menu select **Generate Curve(s)**.
2. Click in the edit box to the right of **Label** and type **1st-Order Elastic** (or some other description to appear in the plot’s legend).
3. Click on the **Apply** button and the response curve is drawn.

Part III. Plot Attributes

1. From the **Axes** menu select **Plot Title**.
2. At the bottom menu bar, click on edit box and enter a title.
3. Click on the **Apply** button.
4. From the **Axes** menu select **X-Attributes**.
5. Click on the edit box to the right of **Label** and change **X** to **Lateral Displacement (in.)**. Click on the edit box to the right of **Max:** and type **5**.
6. Click on the **Apply** button.
7. Repeat steps 4 to 6, using **Y-Attributes** to define the y-label as **P (kips)** and increasing the number of **Divisions** to **8**.

Note:
The legend can be dragged to anywhere on the screen by clicking on it and holding the mouse button down to move it.
Other Methods of Analysis

MASTAN2 provides six different methods of analysis. These will be illustrated by using the current example problem and plotted results.

Part I. Second-order Elastic

1. From the MASTAN2 **Analysis** menu select **2nd-Order Elastic**.
2. At the bottom menu bar, click on the pop-up menu just to the right of **Analysis Type:** and select **Planar Frame (x-y)**.
3. Click on the **Apply** button to perform the analysis.
4. From the **Results** menu select **MSAPlot**.
5. From the MSAPlot **Curves** menu select **Generate Curve(s)**.
6. At the bottom menu bar, click in the edit box to the right of **Label** and type **2nd-Order Elastic**.
7. Click on the pop-up menu just to the right of **Color** and select **red**.
8. Click on the **Apply** button and the response curve is added to the plot.

Notes:
1. Steps 4 to 8 assume that the x- and y-data plot parameters were defined as previously described.
2. Diagrams, specific node and element results, and reports can be generated for all methods of analysis in the same manner as they were for the first-order elastic analysis.
Other Methods of Analysis (cont.)

Part II. First-order Inelastic

1. From the MASTAN2 Analysis menu select 1st-Order Inelastic.
2. At the bottom menu bar, click on the pop-up menu just to the right of Analysis Type: and select Planar Frame (x-y).
3. Click on the edit box to the right of Max # of Incrs: and change the 10 to 20. The analysis will stop when either excessive deflections are detected or 20 load increments are applied or a maximum applied load ratio (Max. Appl. Ratio) of 1.0 is reached.
4. Click on the Apply button to perform the analysis. Note the analysis stops as a result of Excessive Deflections (most likely indicating the formation of a mechanism). Click on No to discontinue the analysis.
5. Note that the analysis stopped after 14 load increments. Click on the pop-up menu just to the left of Apply and select Continue Prev.
6. Click on the edit box to the right of Max # of Incrs: and change 20 to 15. This will let the analysis run for one additional increment.

< move to next slide for additional instructions >
7. Click on the **Apply** button to continue the analysis. Note that the analysis stops again as result of **Excessive Deflections**. This time click on **Yes** to continue the analysis. As expected, the analysis immediately stops because the maximum number of load increments (15) has been reached.

8. From the **Results** menu select **Diagrams** and submenu **Deflected Shape**.

9. At the bottom menu bar, click on the **Apply** button. From the **View** menu select **Fit**. The deflected shape is shown along with the location of plastic hinges. Values indicate the load ratios when the hinges formed.

10. Click on the `<` at the lower right of the bottom menu and then click on **Apply** to view deflected shapes for previous load increments.

11. From the **Results** menu select **MSAPlot**.

12. At the bottom menu bar, click in the edit box to the right of **Label** and type **1st-Order Inelastic**.

13. Change the **Color** to **blue** and click on the **Apply** button. The response curve for this analysis is added to the plot.

Note:

When diagrams are drawn, a descriptive label appears at the top of the MASTAN model window.
**** Deflected Shape: 1st-Order Inelastic, Incr #15, Applied Load Ratio = 0.97515 ****
Other Methods of Analysis (cont.)

Part III. Second-order Inelastic

1. From the MASTAN2 Analysis menu select 2nd-Order Inelastic.
2. At the bottom menu bar, click on the pop-up menu just to the right of Analysis Type: and select Planar Frame (x-y).
3. Click on the edit box to the right of Max # of Incrs: and change 10 to 20. The analysis will stop when either an instability is detected or 20 load increments are applied or a maximum applied load ratio (Max. Appl. Ratio) of 1.0 is reached.
4. Click on the pop-up menu just to the right of Solution Type: and select Predictor-Corrector.
5. Click on the pop-up menu just to the right of Modulus: and select Et.
6. Click on the Apply button to perform the analysis. Note the analysis stops as a result of an instability (Limit Reached).
7. Click on the pop-up menu just to the right of Apply and select Continue Prev.

< move to next slide for additional instructions >
Part III. Second-order Inelastic (cont.)

8. Click on the **Apply** button to perform a post-limit point analysis. Only let the analysis run for one or two unloading increments and then click on the **Stop** button. Alternatively, set the **Max # of Incrs:** to **14**.

9. From the **Results** menu select **Diagrams** and submenu **Deflected Shape**.

10. At the bottom menu bar, click on the `<` at the lower right of the bottom menu until the increment number reads **12** (the limit load increment).

11. Click on the **Apply** button. From the **View** menu select **Fit**. The deflected shape and location of plastic hinges are shown. Note that an instability has occurred without a kinematic mechanism.

12. From the **Results** menu select **MSAPlot**.

13. At the bottom menu bar, click in the edit box to the right of **Label** and type **2nd-Order Inelastic**.

14. Change the **Color** to **green** and click on the **Apply** button. The response curve for all four methods of analysis are shown in the plot.

Note:

When diagrams are drawn for the limit load, the descriptive label at the top of the MASTAN2 model window is encased in *** ’s.
**** Deflected Shape: 2nd-Order Inelastic, Incr # 12, Applied Load Ratio = 0.8391 ****
Other Methods of Analysis (cont.)

Part IV. Elastic and Inelastic Critical Loads

1. From the MASTAN2 **Analysis** menu select **Elastic Critical Load**.
2. At the bottom menu bar, click on the pop-up menu just to the right of **Analysis Type:** and select **Planar Frame (x-y)**.
3. Click on the > at the lower right of the bottom menu until the **Max. # of Modes:** number reads 3.
4. Click on the **Apply** button to perform the analysis.
5. From the **Results** menu select **Diagrams** and submenu **Deflected Shape**.
6. At the bottom menu bar, click on the edit box to right of **Scale:** and replace 10 with -100.
7. Click on the **Apply** button and the first mode is shown.
8. To view higher modes, advance the mode number by using > at the lower right of the bottom menu and then click on **Apply**.
9. From the **Analysis** menu select **Inelastic Critical Load** and repeat steps 2, 4, 5, and 7. Note that only one inelastic mode can be calculated.

Note:

The analysis type, mode number, and critical load ratio is shown in the descriptive label located at the top of the main model window.
Deflected Shape: Elastic Critical Load, Mode #1, Applied Load Ratio = 5.1411
Deflected Shape: Elastic Critical Load, Mode #2, Applied Load Ratio = 10.4291
Deflected Shape: Inelastic Critical Load, Mode #1, Applied Load Ratio = 1.4441
MASTAN2 can be used to model various two- and three-dimensional frames and trusses. Samples of these are provided below.

- Two-dimensional gable frame
- Two-dimensional braced frame with leaning columns
- Three-dimensional dome structure
Overview of Commands

MASTAN2 Menus:

- File
- View
- Geometry
- Properties
- Conditions
- Analysis
- Results

MSAPlot Menus:

- File
- View
- Axes
- Curves

< click on a menu button >
MASTAN2: File

- **Info**: Provide information about the program MASTAN2
- **Open ...**: Read an existing MASTAN2 file
- **Save**
 - **Save As ...**: Write a MASTAN2 file to disk
- **New**: Clear existing model and all attributes
- **Define Title**: Provide a model description
- **Print Photo ...**: Print a photo of the current window
- **Create Report ...**: Write a text report
- **Quit**: Exit MASTAN2
MASTAN2: View

- Manually adjust view of model
- Rotate view about an axis
- With mouse button down, define a rectangle to zoom in on part of the model
- Click and define center of view
- Scale view to fit all graphics in window
- Select a pre-defined view
- Turn on and off visual entities such as node and element numbers, web orientation vector, etc.
- Control display parameters
MASTAN2: Geometry

Geometry

- Define Node
- Move Node(s)
- Duplicate Node(s)
- Remove Node(s)
- Renumber Nodes

- Define Element
- Remove Element(s)
- Subdivide Element(s)
- Re-orient Element(s)
- Define Connections

- Define Frame
- Information

Manually input x, y, z coordinates for a node(s)
Translate a node(s) in the x, y, z direction
Copy a node(s) in the x, y, z direction
Delete a node(s) that is not attached to an element
Change labeling sequence of the nodes
Manually define an element by clicking on node(s)
Delete an element(s)
Replace an element with a series of elements
Change the orientation of an element’s local y-axis
Change element ends from rigid to pinned
Create a 2- or 3-dimensional orthogonal frame
Obtain specific information about a node or element
Define a section group(s) by inputting key geometric properties, such as areas, moments of inertia, and plastic section moduli

Change existing section properties

Delete a section

Attach sections to elements

Define a material group(s) by inputting key properties, such as modulus of elasticity, Poisson’s ratio, and yield strength

Change existing material properties

Delete a material group

Attach material groups to elements
MASTAN2: Conditions

- Define Fixities
- Define Forces
- Define Moments
- Define Uniform Loads
- Define Disp. Settlements
- Define Rot. Settlements

- Restrain translational and rotational degrees of freedom at a node(s)
- Apply concentrated forces and moments to a node(s)
- Apply uniformly distributed loads along the three local axes of an element(s)
- Prescribe nonzero translational and rotational values at nodal degrees of freedom
Define analysis parameters and perform selected method of analysis. Nonlinear analysis methods employ a user selected incremental solution scheme. Second-order effects are incorporated by using a geometric stiffness matrix and coordinate updating. Material nonlinear effects are modeled with a concentrated plastic hinge model.

Define analysis parameters and perform selected method of analysis. Critical load ratios and buckled mode shapes are determined using an eigenvalue analysis.

Define analysis parameters and perform a selected method of analysis that will employ user defined analysis modules. These files interact directly with MASTAN2 by using the common ud_*.m files that are provided with this software.
Define parameters and draw selected diagram. These include deformed shape and element force diagrams such as axial or shear forces and torque or bending moments. Also provides an option to turn off an existing diagram.

Provide displacement or reaction components at user selected node.

Provide internal forces and moments at any point along the length of a user selected element.

Run an application that provides the opportunity to plot response curves.
Provide information about the program MSAPlot
Read an existing curve data file (text/ascii format)
Write a curve data file to disk
Clear all current curves and plot attributes
Print a photo of the current window
Write a text report
Bring MASTAN2 window to front
Exit MSAPlot
Rotate view of plot about an axis
Select a pre-defined view
Turn on and off visual plot entities such as grids, axes, and legend
Control display parameters
Define X-, Y-, or Z- axes attributes such as label, number of tick marks, and minimum/maximum limits.

Provide a title that is located at the top of the plot.

Scale all three axes to fit extremes of current curve data.
Define the response data that should be plotted on the X-, Y-, or Z-axis.

Using the data-to-axis relationships defined in the above and the curve graphical attributes prescribed in this option, generate a two- or three-dimensional response curve.

Change an existing curve’s graphical attributes such as label, color, style, and line weight.

Remove an existing curve from the plot.
Programming

Users that have access to MATLAB can also employ MASTAN2 to execute their own MATLAB code. Twelve M-files (in text format) reside in the MASTAN2 folder that you copied from your CD-ROM to your computer. These files contain functions that permit your code to interface with MASTAN2.

For example, the function contained in the file `ud_3d1el.m` is called when a user selects **Analysis--User Defined -- 1st-Order Elastic** and then applies a three-dimensional analysis. Since no code is originally provided in this function, the analysis cannot be performed and MASTAN2 responds with an appropriate message. However, you can make this analysis option functional by expanding the code contained in this file. Furthermore, the code you provide may also call other M-files that you prepare and hence, provide you the opportunity to write code in a modular style. The only limitation is that the first line of the twelve M-files (the function line containing the name of the routine and the input and output arrays) cannot be changed. These M-files are well commented and their use should be self-explanatory. It is important to note that the attributes or permission settings for these files may be originally set at Read Only. Before getting started, be sure to check this file property and remove it as required.

The twelve user-defined M-files and their corresponding analysis intent include:

<table>
<thead>
<tr>
<th>M-file</th>
<th>Analysis Intent</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ud_3d1el.m</code></td>
<td>Three-dimensional 1-st Order Elastic</td>
</tr>
<tr>
<td><code>ud_2d1el.m</code></td>
<td>Two-dimensional 1-st Order Elastic</td>
</tr>
<tr>
<td><code>ud_3d2el.m</code></td>
<td>Three-dimensional 2nd-Order Elastic</td>
</tr>
<tr>
<td><code>ud_2d2el.m</code></td>
<td>Two-dimensional 2nd-Order Elastic</td>
</tr>
<tr>
<td><code>ud_3d1in.m</code></td>
<td>Three-dimensional 1-st Order Inelastic</td>
</tr>
<tr>
<td><code>ud_2d1in.m</code></td>
<td>Two-dimensional 1-st Order Inelastic</td>
</tr>
<tr>
<td><code>ud_3d2in.m</code></td>
<td>Three-dimensional 2nd-Order Inelastic</td>
</tr>
<tr>
<td><code>ud_2d2in.m</code></td>
<td>Two-dimensional 2nd-Order Inelastic</td>
</tr>
<tr>
<td><code>ud_3decl.m</code></td>
<td>Three-dimensional Elastic Critical Load</td>
</tr>
<tr>
<td><code>ud_2decl.m</code></td>
<td>Two-dimensional Elastic Critical Load</td>
</tr>
</tbody>
</table>

Good Luck !
Additional information and updates for MASTAN2 may be provided in a homepage located at the following URL:

http://www.wiley.com/college/engin/McGuire